A006999 Partitioning integers to avoid arithmetic progressions of length 3.
0, 1, 2, 4, 7, 11, 17, 26, 40, 61, 92, 139, 209, 314, 472, 709, 1064, 1597, 2396, 3595, 5393, 8090, 12136, 18205, 27308, 40963, 61445, 92168, 138253, 207380, 311071, 466607, 699911, 1049867, 1574801, 2362202, 3543304, 5314957, 7972436
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- B. Chen, R. Chen, J. Guo, S. Lee et al, On Base 3/2 and its sequences, arXiv:1808.04304 [math.NT], 2018.
- Joseph Gerver, James Propp and Jamie Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions Proc. Amer. Math. Soc. 102 (1988), no. 3, 765-772.
- D. R. Hofstadter, Eta-Lore [Cached copy, with permission]
- D. R. Hofstadter, Pi-Mu Sequences [Cached copy, with permission]
- D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991
- James Propp and N. J. A. Sloane, Email, March 1994
- Jane Street, Traversing the Infinite Sidewalk (2023).
Crossrefs
Programs
-
Haskell
a006999 n = a006999_list !! n a006999_list = 0 : map ((`div` 2) . (+ 2) . (* 3)) a006999_list -- Reinhard Zumkeller, Oct 26 2011
-
Mathematica
a[0] = 0; a[n_] := a[n] = Floor[(3 a[n-1] + 2)/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 01 2018 *)
-
PARI
a(n)=if(n<1,0,floor((3*a(n-1)+2)/2))
Formula
a(n) = A061419(n) - 1.
a(n) = A061418(n) - 2.
a(n) = floor((3a(n-1)+2)/2).
a(n) = -1 + floor(c*(3/2)^n) where c=1.0815136... - Benoit Cloitre, Jan 10 2002; this constant c is 2/3*K(3) (see A083286). - Ralf Stephan, May 29 2003
a(n+1) = (3*a(n))/2+1 if a(n) is even. a(n+1) = (3*a(n)+1)/2 if a(n) is odd. - Miquel Cerda, Jun 15 2019
Extensions
More terms from James Sellers, Feb 06 2000
Comments