A007018 a(n) = a(n-1)^2 + a(n-1), a(0)=1.
1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442, 12864938683278671740537145998360961546653259485195806
Offset: 0
References
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 94.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..12
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- David Adjiashvili, Sandro Bosio and Robert Weismantel, Dynamic Combinatorial Optimization: a complexity and approximability study, 2012.
- Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, and Pierre Marquis, On the Explanatory Power of Decision Trees, arXiv:2108.05266 [cs.AI], 2021.
- Arvind Ayyer, Anne Schilling, Benjamin Steinberg and Nicolas M. Thiéry, Markov chains, R-trivial monoids and representation theory, Int. J. Algebra Comput., Vol. 25 (2015), pp. 169-231, arXiv preprint, arXiv:1401.4250 [math.CO], 2014.
- Umberto Cerruti, Percorsi tra i numeri (in Italian), page 5.
- A. Yu. Chirkov, D. V. Gribanov and N. Yu. Zolotykh, On the Proximity of the Optimal Values of the Multi-Dimensional Knapsack Problem with and without the Cardinality Constraint, arXiv:2004.08589 [math.OC], 2020.
- D. R. Curtiss, On Kellogg's Diophantine problem, Amer. Math. Monthly, Vol. 29, No. 10 (1922), pp. 380-387.
- Christian Elsholtz and Stefan Planitzer, Sums of four and more unit fractions and approximate parametrizations, arXiv:2012.05984 [math.NT], 2020.
- Steven Finch, Exercises in Iterational Asymptotics, arXiv:2411.16062 [math.NT], 2024. See p. 9.
- Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
- Murray S. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see p. 577.
- Diana Maimuţ and George Teşeleanu, Inferring Bivariate Polynomials for Homomorphic Encryption Application, Cryptology ePrint Archive (2023) Art. 844. See p. 16.
- MathOverflow, Is OEIS A007018 really a subsequence of squarefree numbers?.
- Marko R. Riedel, Two-colorings of unordered full binary trees on n levels.
- Matthew Roughan, Surreal Birthdays and Their Arithmetic, arXiv:1810.10373 [math.HO], 2018.
- Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Vol. 113, No. 10 (Dec., 2006), pp. 937-938.
- N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
- Bertrand Teguia Tabuguia, Computing with D-Algebraic Sequences, arXiv:2412.20630 [math.AG], 2024. See p. 9.
- Alasdair Urquhart, The complexity of propositional proofs, Bull. Symbolic Logic, Vol. 1, No. 4 (1995) pp. 425-467, esp. p. 434.
- Zalman Usiskin, Letter to N. J. A. Sloane, Oct. 1991.
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
Crossrefs
Programs
-
Haskell
a007018 n = a007018_list !! n a007018_list = iterate a002378 1 -- Reinhard Zumkeller, Dec 18 2013
-
Magma
[n eq 1 select 1 else Self(n-1)^2 + Self(n-1): n in [1..10]]; // Vincenzo Librandi, May 19 2015
-
Maple
A007018 := proc(n) option remember; local aprev; if n = 0 then 1; else aprev := procname(n-1) ; aprev*(aprev+1) ; end if; end proc: # R. J. Mathar, May 06 2016
-
Mathematica
FoldList[#^2 + #1 &, 1, Range@ 8] (* Robert G. Wilson v, Jun 16 2011 *) NestList[#^2 + #&, 1, 10] (* Harvey P. Dale, Sep 07 2011 *)
-
Maxima
a[1]:1$ a[n]:=(a[n-1] + (a[n-1]^2))$ A007018(n):=a[n]$ makelist(A007018(n),n,1,10); /* Martin Ettl, Nov 08 2012 */
-
PARI
a(n)=if(n>0,my(x=a(n-1));x^2+x,1) \\ Edited by M. F. Hasler, May 20 2019 and Jason Yuen, Mar 01 2025
-
Python
from itertools import islice def A007018_gen(): # generator of terms a = 1 while True: yield a a *= a+1 A007018_list = list(islice(A007018_gen(),9)) # Chai Wah Wu, Mar 19 2024
Formula
a(n) = A000058(n)-1 = A000058(n-1)^2 - A000058(n-1) = 1/(1-Sum_{jA000058(j)) where A000058 is Sylvester's sequence. - Henry Bottomley, Jul 23 2001
a(n) = floor(c^(2^n)) where c = A077125 = 1.597910218031873178338070118157... - Benoit Cloitre, Nov 06 2002
a(1)=1, a(n) = Product_{k=1..n-1} (a(k)+1). - Benoit Cloitre, Sep 13 2003
a(n) = A139145(2^(n+1) - 1). - Reinhard Zumkeller, Apr 10 2008
If an (additional) initial 1 is inserted, a(n) = Sum_{kFranklin T. Adams-Watters, Jun 11 2009
a(n+1) = a(n)-th oblong (or promic, pronic, or heteromecic) numbers (A002378). a(n+1) = A002378(a(n)) = A002378(a(n-1)) * (A002378(a(n-1)) + 1). - Jaroslav Krizek, Sep 13 2009
a(n) = A053631(n)/2. - Martin Ettl, Nov 08 2012
Sum_{n>=0} (-1)^n/a(n) = A118227. - Amiram Eldar, Oct 29 2020
Sum_{n>=0} 1/a(n) = A371321. - Amiram Eldar, Mar 19 2024
Comments