A007040 Number of (marked) cyclic n-bit binary strings containing no runs of length > 2.
2, 2, 6, 6, 10, 20, 28, 46, 78, 122, 198, 324, 520, 842, 1366, 2206, 3570, 5780, 9348, 15126, 24478, 39602, 64078, 103684, 167760, 271442, 439206, 710646, 1149850, 1860500, 3010348, 4870846, 7881198, 12752042, 20633238, 33385284, 54018520
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Z. Agur, A. S. Fraenkel, and S. T. Klein, The number of fixed points of the majority rule, Discr. Math., 70 (1988), 295-302.
- A. Burstein and H. S. Wilf, On cyclic strings without long constant blocks, Fibonacci Quarterly, 35 (1997), 240-247.
- A. E. Edlin and D. Zeilberger, The Goulden-Jackson cluster method for cyclic words, Adv. Appl. Math., 25 (2000), 228-232.
- W. Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821.
- Petros Hadjicostas and Lingyun Zhang, On cyclic strings avoiding a pattern, Discrete Mathematics, 341 (2018), 1662-1674.
- Matthew Macauley, Jon McCammond, and Henning S. Mortveit, Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, 33(1) (2011), 11-35.
- A. McLeod and W. O. J. Moser, Counting cyclic binary strings, Math. Mag., 80(1) (2007), 29-37.
- W. O. J. Moser, On cyclic binary n-bit strings, Report from the Department of Mathematics and Statistics, McGill University, 1991. (Annotated scanned copy)
- W. O. J. Moser, Cyclic binary strings without long runs of like (alternating) bits, Fibonacci Quart. 31(1) (1993), 2-6.
- Noriaki Sannomiya, Hosho Katsura, and Yu Nakayama, Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion, arXiv:1612.02285 [cond-mat.str-el], 2016. See Table I, line 2.
- Jair Taylor, Counting Words with Laguerre Series, Electron. J. Combin., 21 (2014), P2.1.
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set.
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (0,1,2,1).
Programs
-
Mathematica
Join[{2}, LinearRecurrence[{0, 1, 2, 1}, {2, 6, 6, 10}, 40]] (* Harvey P. Dale, Nov 09 2011 *) Join[{2}, Table[n Sum[Binomial[2 k, n - 2 k]/k, {k, n}], {n, 2, 40}]] (* Harvey P. Dale, Nov 09 2011 *) Table[LucasL[n] + 2 Cos[2 n Pi/3], {n, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
-
PARI
a(n)=if(n<3,2,([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,2,1,0]^(n-2)*[2;6;6;10])[1,1]) \\ Charles R Greathouse IV, Jun 15 2015
Formula
a(n) = a(n-2) + 2*a(n-3) + a(n-4), n >= 7. - David W. Wilson
a(n) = n*Sum_{k=1..n} binomial(2*k, n-2*k)/k for n > 1 with a(0) = 0 and a(1) = 2. - Vladimir Kruchinin, Oct 12 2011
G.f.: 2*x*(1 + x + 2*x^2 - x^4)/((1 - x - x^2)*(1 + x + x^2)). - Colin Barker, Mar 15 2012
a(n) = A000032(n) + 2*cos(2*Pi*n/3) for n > 1. - Eric W. Weisstein, Mar 30 2017
a(n) = 2*A100886(n-1), n > 1. - R. J. Mathar, Jan 20 2018
Extensions
Name clarified by Petros Hadjicostas, Jul 08 2018
Comments