A007042 Left diagonal of partition triangle A047812.
0, 1, 3, 5, 9, 13, 20, 28, 40, 54, 75, 99, 133, 174, 229, 295, 383, 488, 625, 790, 1000, 1253, 1573, 1956, 2434, 3008, 3716, 4563, 5602, 6840, 8347, 10141, 12308, 14881, 17975, 21635, 26013, 31183, 37336, 44581, 53172, 63259, 75173, 89132, 105556, 124752
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- S. Govindarajan, Notes on higher-dimensional partitions, arXiv:1203.4419 [math.CO], 2012.
- R. K. Guy, Letter to N. J. A. Sloane, Aug. 1992.
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Preprint, 1992. (Annotated scanned copy)
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
Crossrefs
Programs
-
Julia
using Nemo function A007042List(len) R, z = PolynomialRing(ZZ, "z") e = eta_qexp(-1, len+2, z) [coeff(e, j) - 2 for j in 2:len+1] end A007042List(45) |> println # Peter Luschny, May 30 2020
-
Mathematica
f[n_]:= Length[Select[IntegerPartitions[2 n], First[#]==n-1 &]]; Table[f[n], {n, 1, 24}] (* Clark Kimberling, Mar 13 2012 *) a[n_]:= PartitionsP[n+1]-2; Table[a[n], {n,1,50}] (* Jean-François Alcover, Jan 28 2015, after M. F. Hasler *)
-
PARI
A007042(n)=numbpart(n+1)-2 \\ M. F. Hasler, Apr 12 2012
Formula
a(n) = A000041(n+1) - 2. - Vladeta Jovovic, Oct 06 2001
Extensions
More terms from James Sellers
Name edited by Petros Hadjicostas, May 31 2020
Comments