cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A176315 Partials sums of A007080.

Original entry on oeis.org

1, 3, 13, 165, 7901, 1383853, 879285501, 2047199658621, 17660268902020093, 569790880105867285245, 69280640454268889757533693
Offset: 1

Views

Author

Jonathan Vos Post, Apr 15 2010

Keywords

Comments

Partials sums of number of labeled Eulerian digraphs with n nodes. The subsequence of primes in this partial sum begins: 3, 13, 7901, 1383853, 17660268902020093.

Examples

			a(5) = 1 + 2 + 10 + 152 + 7736 = 7901 is prime.
		

Crossrefs

Cf. A007080.

Formula

a(n) = SUM[i=1..n] A007080(i).

A229865 Number of n X n 0..1 arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Also known as labeled Eulerian digraphs allowing loops. - Brendan McKay, May 12 2019

Examples

			Some solutions for n=4:
  0 0 0 1     0 0 1 0     0 0 0 1     0 0 1 0     0 0 1 1
  0 1 0 0     1 0 0 0     1 0 1 0     0 0 1 1     1 0 0 1
  0 0 0 1     0 1 0 0     0 1 0 1     0 1 1 1     1 1 1 0
  1 0 1 0     0 0 0 1     0 1 1 0     1 1 0 0     0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
  {}
  {11}
  {22}
  {11,22}
  {12,21}
  {11,12,21}
  {12,21,22}
  {11,12,21,22}
(End)
		

Crossrefs

Column 1 of A229870.
The unlabeled version is A308111.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)

Formula

a(n) = 2^n * A007080(n). - Andrew Howroyd, Sep 11 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, May 14 2019
Terms a(11) and beyond from Andrew Howroyd, Sep 11 2019

A058338 Number of digraphs with indegree = outdegree at each vertex, or Eulerian digraphs (including disconnected graphs) with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 18, 111, 2292, 181519, 51294836, 48814342597, 157166848652408, 1736132851915020181, 66689407510956897981608, 9012860249531358132125181323, 4328664025050045497712238253179872, 7451990930474005836163802713084971814275, 46329549163592383403451764167315165130121820112
Offset: 0

Views

Author

Keywords

Comments

Every regular tournament (A096368) is a Eulerian digraph. Similar methods may be used to compute terms of this sequence. - Andrew Howroyd, Apr 12 2020

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 219 (but there is an error).
  • Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.

Crossrefs

Cf. A007080 (labeled), A058337 (connected), A096368, A308161, A308111.

Programs

Formula

Euler transform of A058337.

Extensions

a(7) added using A058337 by Falk Hüffner, Dec 03 2015
a(8) and a(9) added using A058337 by Brendan McKay, May 05 2019
Terms a(10) and beyond from Andrew Howroyd, Apr 12 2020

A229417 T(n,k) = number of n X n 0..k zero-diagonal arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 1, 2, 1, 3, 10, 1, 4, 45, 152, 1, 5, 136, 4743, 7736, 1, 6, 325, 59008, 3801411, 1375952, 1, 7, 666, 426425, 345706336, 23938685973, 877901648, 1, 8, 1225, 2164680, 11782824375, 28256240134144, 1215663478473627, 2046320373120, 1, 9, 2080
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Comments

Table starts
.........1................1....................1................1............1
.........2................3....................4................5............6
........10...............45..................136..............325..........666
.......152.............4743................59008...........426425......2164680
......7736..........3801411............345706336......11782824375.213067487016
...1375952......23938685973.......28256240134144.7093199984236625
.877901648.1215663478473627.33097994593655140864

Examples

			Some solutions for n=4 k=4
..0..0..2..0....0..1..0..4....0..0..1..3....0..1..1..4....0..1..1..0
..1..0..2..1....2..0..4..0....1..0..2..3....4..0..2..3....0..0..1..2
..1..2..0..4....2..4..0..2....2..3..0..1....1..4..0..1....0..0..0..4
..0..2..3..0....1..1..4..0....1..3..3..0....1..4..3..0....2..2..2..0
		

Crossrefs

Columns 1..3 are A007080, A229415, A229416.
Rows 3..6 are A037270(n+1), A229418, A229419, A229420.
Cf. A229870.

Formula

Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/2)*n^4 + 2*n^3 + (7/2)*n^2 + 3*n + 1
n=4: [polynomial of degree 9]
Row n is an Ehrhart polynomial of degree (n-1)^2 for the polytope of x(i,j), i,j = 1..n for j <> i, with 0 <= x(i,j) <= 1 and Sum_i x(i,j) = Sum_i x(j,i). - Robert Israel, Mar 30 2023
T(n,k) = A229870(n,k) / (k + 1)^n. - Andrew Howroyd, Mar 30 2023

A054955 Number of labeled Eulerian digraphs with n nodes and an even number of edges.

Original entry on oeis.org

1, 2, 8, 88, 3928, 688336, 438953344, 1023160206720, 8829110851362176, 284886609918484446976, 34640035331694391965082624, 15970703846423879100652101753856, 28060860469435555251136195653129640960, 188681219498365676664628141013181402003089408
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A007080(n) + n!)/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 05 2001
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A054956 Number of labeled Eulerian digraphs with n nodes and an odd number of edges.

Original entry on oeis.org

0, 0, 2, 64, 3808, 687616, 438948304, 1023160166400, 8829110850999296, 284886609918480818176, 34640035331694391925165824, 15970703846423879100651622752256, 28060860469435555251136195646902620160, 188681219498365676664628141013181314824798208
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A007080(n) - n!)/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 05 2001
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A054957 Number of labeled connected Eulerian digraphs with n nodes.

Original entry on oeis.org

1, 1, 6, 118, 7000, 1329496, 868255024, 2039295163312, 17639804273910144, 569596637165777524096, 69273803156588266525129984, 31940576331984155835757999795456, 56121305700570450429977355284230355968, 377361653292638108206937443603065676106341376
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Cf. A058338, A054955, A007080 (EXP-transform), A054959, A054956, A058337, A054958.

Formula

a(n) = A054958(n) + A054959(n). - R. J. Mathar, Apr 13 2017

Extensions

More terms from Vladeta Jovovic, Mar 06 2001
More terms from Alois P. Heinz, Apr 14 2017

A054958 Number of labeled connected Eulerian digraphs with n nodes and an even number of edges.

Original entry on oeis.org

1, 1, 4, 62, 3512, 664808, 434127872, 1019647584176, 8819902136975232, 284798318582888943488, 34636901578294133264379392, 15970288165992077917879019856128, 28060652850285225214988677642354678784, 188680826646319054103468721801532841166681088
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A054957 + (n-1)!)/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 06 2001
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A054959 Number of labeled connected Eulerian digraphs with n nodes and an odd number of edges.

Original entry on oeis.org

0, 0, 2, 56, 3488, 664688, 434127152, 1019647579136, 8819902136934912, 284798318582888580608, 34636901578294133260750592, 15970288165992077917878979939328, 28060652850285225214988677641875677184, 188680826646319054103468721801532834939660288
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A054957(n) - (n-1)!)/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 06 2001
a(12)-a(14) from Andrew Howroyd, Sep 10 2018

A380592 Number of ways that a European soccer league tournament with n teams can complete with all teams having the same number of points.

Original entry on oeis.org

1, 3, 27, 1083, 296081, 696779523, 16503494334993, 3439079361325736243
Offset: 1

Views

Author

Ruediger Jehn, Jan 27 2025

Keywords

Comments

Teams play each other twice for a total of M = n*(n-1) matches.
A victory is awarded 3 points, a draw 1 point and a defeat 0 points.
The total number of possible match outcomes is 3^M = A053764(n) and a(n) is how many of them result in all teams finishing with the same points score.
If all matches were randomly assigned a result, the probability that all teams would end up with the same number of points is a(n)/A053764(n), which in a typical league of 18 or 20 teams is very small.
A007080(n) is the number of ways if there are no draws.

Examples

			We denote the vector (r1, r2 ... r_M) with r_i in {0, 1, 3} as a possible sequence of match results. Then a(2) = 3: (0, 0) - both teams lose their home game and have 3 points at the end, (1,1) - both matches end with a draw and both teams have 2 points, (3,3) - both teams win their home game and have 3 points.
		

Crossrefs

Showing 1-10 of 10 results.