cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007106 Number of labeled odd degree trees with 2n nodes.

Original entry on oeis.org

1, 4, 96, 5888, 686080, 130179072, 36590059520, 14290429935616, 7405376630685696, 4917457306800619520, 4071967909087792857088, 4113850542422629363482624, 4980673081258443273955966976, 7119048451600750435732824260608, 11861520124846917915630931846103040
Offset: 1

Views

Author

Keywords

Examples

			From _Peter Bala_, Apr 24 2012: (Start)
Let G(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + ... be the e.g.f. for A143601. Then sinh(x*G(x)) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + ....
Conjectural e.g.f. as an x-adic limit:
sinh(x) = x + ...; sinh(x*cosh(x)) = x + 4*x^3/3! + ...;
sinh(x*cosh(x*cosh(x))) = x + 4*x^3/3! + 96*x^5/5! + ...;
sinh(x*cosh(x*cosh(x*cosh(x)))) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + ....
(End)
		

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007106(n) = A(2n) where n>=2, A(n) = (add(binomial(n,q)*(n-2*q)^(n-2)/(n-2)!, q=0..n) - add(binomial(n-1,q)*(n-2*q)^(n-3)/(n-3)!, q=0..n-1) + add(binomial(n-1,q)*(n-2-2*q)^(n-3)/(n-3)!, q=0..n-1))*n!/2^(n+1)/(n-1)
  • Mathematica
    {1}~Join~Array[(1/2)*Sum[Binomial[2 #, k]*(# - k)^(2 # - 2), {k, 0, # - 1}] &, 12, 2] (* Michael De Vlieger, Oct 13 2021 *)
  • PARI
    a(n) = if(n<=1, n==1, sum(k=0, n-1, binomial(2*n,k) * (n-k)^(2*n-2))/2) \\ Andrew Howroyd, Nov 22 2021

Formula

a(n) = A060279(n)/(2*n). - Vladeta Jovovic, Feb 08 2005
Bisection of A058014. The expansion 1/sqrt(1+x^2)*arcsinh(x) = x - 4*x^3/3! + 64*x^5/5! - ... (see A002454) has series reversion x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + .... The coefficients appear to be the terms of this sequence. As an x-adic limit this e.g.f. equals lim_{n -> infinity} sinh(f(n,x)), where f(0,x) = x and f(n,x) = x*cosh(f(n-1,x)) for n >= 1. See the example section below. - Peter Bala, Apr 24 2012
a(n) = Sum_{k=1..n} binomial(n,k) * k! * (n-2)! [z^{n-2}] [u^k] exp(u(exp(z)+exp(-z)-2)/2)). - Marko Riedel, Jun 16 2016
From Alexander Burstein, Oct 13 2021: (Start)
a(n) = (1/2) * Sum_{k=0..n-1} binomial(2*n,k) * (n-k)^(2*n-2) for n >= 2.
a(n) = (2*n-1)!*[x^(2*n-1)] sinh(REVERT(x/cosh(x))), see A036778. (End)
a(n) = Sum_{k=0..n-1} A156289(n-1, k)*(2*n)!/(2*n-k)!. - Peter Luschny, May 07 2022

Extensions

Corrected and extended by Vladeta Jovovic, Feb 08 2005