A007147 Number of self-dual 2-colored necklaces with 2n beads.
1, 1, 2, 2, 4, 5, 9, 12, 23, 34, 63, 102, 190, 325, 612, 1088, 2056, 3771, 7155, 13364, 25482, 48175, 92205, 175792, 337594, 647326, 1246863, 2400842, 4636390, 8956060, 17334801, 33570816, 65108062, 126355336, 245492244, 477284182
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Zhe Sun, T Suenaga, P Sarkar, S Sato, M Kotani, H Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nath. Acead. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Oswin Aichholzer and Anna Brötzner, Bicolored Order Types, Comp. Geom. Topology (2024) Vol. 3, No. 2, 3:1-3:17.
- Amos Altshuler and Peter McMullen, The number of simplicial neighbourly d-polytopes with d + 3 vertices, Mathematika, 20(02):263-266, 1973., Theorem 1, p. 263.
- Johannes Böhm, Generalized hyperbolic Napier cycles and their hyperbolic kernels, Part III, Jenaer Schriften zur Mathematik und Informatik, Math/inf/06/08, 2008.
- Moritz Firsching, Realizability and inscribability for some simplicial spheres and matroid polytopes, , arXiv:1508.02531 [math.MG], 2015. See Appendix A1.
- Bernd Mulansky and Andreas Potschka, A zonogon approach for computing small polygons of maximum perimeter, arXiv:2404.01841 [math.OC], 2024. See p. 9. See also Math. Program., 2025.
- E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations, Pacific J. Math., 110 (1984), 203-221.
- Index entries for sequences related to necklaces
Programs
-
Mathematica
a[n_] := (1/2)*(2^Quotient[n-1, 2] + Total[(Mod[#, 2]*EulerPhi[#]*2^(n/#) & ) /@ Divisors[n]]/(2*n)); Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Oct 24 2011, after Pari *)
-
PARI
a(n)= (1/2) *(2^((n-1)\2)+sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n))
-
Sage
def a(n): return 2^floor((n-3)/2)+1/(4*(n))*sum([euler_phi(h)*2^((n)/h) for h in divisors(n) if is_odd(h)]) # Moritz Firsching, Aug 13 2015
Formula
a(n) = A263768(n) + 1. - Bernd Mulansky, Mar 08 2023
Extensions
More terms from Michael Somos.
Comments