A007304 Sphenic numbers: products of 3 distinct primes.
30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426, 429, 430, 434, 435, 438
Offset: 1
Examples
From _Gus Wiseman_, Nov 05 2020: (Start) Also Heinz numbers of strict integer partitions into three parts, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are counted by A001399(n-6) = A069905(n-3), with ordered version A001399(n-6)*6. The sequence of terms together with their prime indices begins: 30: {1,2,3} 182: {1,4,6} 286: {1,5,6} 42: {1,2,4} 186: {1,2,11} 290: {1,3,10} 66: {1,2,5} 190: {1,3,8} 310: {1,3,11} 70: {1,3,4} 195: {2,3,6} 318: {1,2,16} 78: {1,2,6} 222: {1,2,12} 322: {1,4,9} 102: {1,2,7} 230: {1,3,9} 345: {2,3,9} 105: {2,3,4} 231: {2,4,5} 354: {1,2,17} 110: {1,3,5} 238: {1,4,7} 357: {2,4,7} 114: {1,2,8} 246: {1,2,13} 366: {1,2,18} 130: {1,3,6} 255: {2,3,7} 370: {1,3,12} 138: {1,2,9} 258: {1,2,14} 374: {1,5,7} 154: {1,4,5} 266: {1,4,8} 385: {3,4,5} 165: {2,3,5} 273: {2,4,6} 399: {2,4,8} 170: {1,3,7} 282: {1,2,15} 402: {1,2,19} 174: {1,2,10} 285: {2,3,8} 406: {1,4,10} (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- "Sphenic", The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Company, 2000.
Crossrefs
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A002033, A010051, A020639, A037074, A046393, A061299, A067467, A071140, A096917, A096918, A096919, A100765, A103653, A107464, A107768, A179643, A179695.
Cf. A162143 (a(n)^2).
For the following, NNS means "not necessarily strict".
A014612 is the NNS version.
A239656 gives first differences.
A005117 lists squarefree numbers.
A008289 counts strict partitions by sum and length.
Programs
-
Haskell
a007304 n = a007304_list !! (n-1) a007304_list = filter f [1..] where f u = p < q && q < w && a010051 w == 1 where p = a020639 u; v = div u p; q = a020639 v; w = div v q -- Reinhard Zumkeller, Mar 23 2014
-
Maple
with(numtheory): a:=proc(n) if bigomega(n)=3 and nops(factorset(n))=3 then n else fi end: seq(a(n),n=1..450); # Emeric Deutsch A007304 := proc(n) option remember; local a; if n =1 then 30; else for a from procname(n-1)+1 do if bigomega(a)=3 and nops(factorset(a))=3 then return a; end if; end do: end if; end proc: # R. J. Mathar, Dec 06 2016 is_a := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 3 and n = mul(P) end: A007304List := upto -> select(is_a, [seq(1..upto)]): # Peter Luschny, Apr 14 2025
-
Mathematica
Union[Flatten[Table[Prime[n]*Prime[m]*Prime[k], {k, 20}, {n, k+1, 20}, {m, n+1, 20}]]] Take[ Sort@ Flatten@ Table[ Prime@i Prime@j Prime@k, {i, 3, 21}, {j, 2, i - 1}, {k, j - 1}], 53] (* Robert G. Wilson v *) With[{upto=500},Sort[Select[Times@@@Subsets[Prime[Range[Ceiling[upto/6]]],{3}],#<=upto&]]] (* Harvey P. Dale, Jan 08 2015 *) Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==3&] (* Gus Wiseman, Nov 05 2020 *)
-
PARI
for(n=1,1e4,if(bigomega(n)==3 && omega(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
list(lim)=my(v=List(),t);forprime(p=2,(lim)^(1/3),forprime(q=p+1,sqrt(lim\p),t=p*q;forprime(r=q+1,lim\t,listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
-
PARI
list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1,3), forprime(q=p+1, sqrtint(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); Set(v) \\ Charles R Greathouse IV, Jan 21 2025
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A007304(n): def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) kmin, kmax = 0,1 while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax # Chai Wah Wu, Aug 29 2024
-
SageMath
def is_a(n): P = prime_divisors(n) return len(P) == 3 and prod(P) == n print([n for n in range(1, 439) if is_a(n)]) # Peter Luschny, Apr 14 2025
Formula
A008683(a(n)) = -1.
A000005(a(n)) = 8. - R. J. Mathar, Aug 14 2009
A178254(a(n)) = 36. - Reinhard Zumkeller, May 24 2010
a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015
Extensions
More terms from Robert G. Wilson v, Jan 04 2006
Comment concerning number of divisors corrected by R. J. Mathar, Aug 14 2009
Comments