cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A113214 Riordan array (1+2x,x(1+x)).

Original entry on oeis.org

1, 2, 1, 0, 3, 1, 0, 2, 4, 1, 0, 0, 5, 5, 1, 0, 0, 2, 9, 6, 1, 0, 0, 0, 7, 14, 7, 1, 0, 0, 0, 2, 16, 20, 8, 1, 0, 0, 0, 0, 9, 30, 27, 9, 1, 0, 0, 0, 0, 2, 25, 50, 35, 10, 1, 0, 0, 0, 0, 0, 11, 55, 77, 44, 11, 1, 0, 0, 0, 0, 0, 2, 36, 105, 112, 54, 12, 1, 0, 0, 0, 0, 0, 0, 13, 91, 182, 156, 65, 13, 1
Offset: 0

Views

Author

Paul Barry, Oct 18 2005

Keywords

Comments

Row sums are Lucas numbers A000204. Diagonal sums are A007307(n+1). Inverse is (-1)^(n-k)A092392(n,k). Product with Pascal triangle (1/(1-x),x/(1-x)) is A111125.

Examples

			Triangle begins
  1;
  2,  1;
  0,  3,  1;
  0,  2,  4,  1;
  0,  0,  5,  5,  1;
  0,  0,  2,  9,  6,  1;
  0,  0,  0,  7, 14,  7,  1;
  0,  0,  0,  2, 16, 20,  8,  1;
Row 4: (1 + x*c(-x))^5 = 1 + 5*x + 5*x^2 + O(x^5). - _Peter Bala_, Sep 10 2021
		

Crossrefs

Formula

T(n, k) = C(k, n-k) + 2*C(k, n-k-1).
T(n, k) = Sum_{j = 0..n} (-1)^(n-j)*C(n, j)*C(j+k, 2*k)*(2*j+1)/(2*k+1).
From Peter Bala, Sep 10 2021: (Start)
T(n,k) = T(n-1,k-1) + T(n-2,k-1) with boundary conditions T(n,n) = 1, T(1,0) = 2 and T(n,k) = 0 for k < 0 or k > n.
The entries in row n, read in reverse order, are the coefficients in the n-th degree Taylor polynomial of (1 + x*c(-x))^(n+1) at x = 0, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

A117363 Expansion of (1-2x)/(1-x^2+x^3).

Original entry on oeis.org

1, -2, 1, -3, 3, -4, 6, -7, 10, -13, 17, -23, 30, -40, 53, -70, 93, -123, 163, -216, 286, -379, 502, -665, 881, -1167, 1546, -2048, 2713, -3594, 4761, -6307, 8355, -11068, 14662, -19423, 25730, -34085, 45153, -59815, 79238
Offset: 0

Views

Author

Paul Barry, Mar 10 2006

Keywords

Comments

Diagonal sums of number triangle A117362.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2x)/(1-x^2+x^3),{x,0,60}],x] (* or *) LinearRecurrence[ {0,1,-1},{1,-2,1},60] (* Harvey P. Dale, Aug 04 2021 *)

Formula

a(n)=a(n-2)-a(n-3); a(n)=sum{k=0..floor(n/2), (-1)^n*(C(k,n-2k)+2*C(k,n-2k-1))}.

A168637 a(n) = a(n-1) + a(n-2) - a(n-4) starting a(0)=0, a(1)=1, a(2)=a(3)=3.

Original entry on oeis.org

0, 1, 3, 3, 6, 8, 11, 16, 21, 29, 39, 52, 70, 93, 124, 165, 219, 291, 386, 512, 679, 900, 1193, 1581, 2095, 2776, 3678, 4873, 6456, 8553, 11331, 15011, 19886, 26344, 34899, 46232, 61245, 81133, 107479, 142380, 188614, 249861, 330996, 438477, 580859, 769475
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 01 2009

Keywords

References

  • R. Pallu de la Barriere, Optimal Control Theory, Dover Publications, New York, 1967, pages 339-344

Crossrefs

Cf. A007307 (for a different starting vector of the Mma program).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60);
    [0] cat Coefficients(R!( x*(1+2*x-x^2)/((1-x)*(1-x^2-x^3)) )); // G. C. Greubel, Apr 20 2025
    
  • Mathematica
    LinearRecurrence[{1,1,0,-1},{0,1,3,3},50] (* or *) CoefficientList[ Series[ x*(-1-2x+x^2)/((1-x)(x^3+x^2-1)),{x,0,50}],x] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^n*[0;1;3;3])[1,1] \\ Charles R Greathouse IV, Jul 29 2016
    
  • SageMath
    def A168637_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+2*x-x^2)/((1-x)*(1-x^2-x^3)) ).list()
    print(A168637_list(60)) # G. C. Greubel, Apr 20 2025

Formula

Limit_{n -> oo} a(n+1)/a(n) = A060006 (also a limiting value of A000931).
G.f.: x*(1 + 2*x - x^2)/((1-x)*(1 - x^2 - x^3)). [Dec 03 2009]
a(n) = 3*A000931(n+4) + 2*A000931(n+3) - 2. [Dec 03 2009]
a(n) = a(n-2) + a(n-3) + 2. - Greg Dresden, May 18 2020

Extensions

Precise definition and more formulas supplied by the Assoc. Editors of the OEIS, Dec 03 2009

A276275 Padovan like sequence: a(n) = a(n-2) + a(n-3) for n>3, a(1)=2, a(2)=2, a(3)=0.

Original entry on oeis.org

2, 2, 0, 4, 2, 4, 6, 6, 10, 12, 16, 22, 28, 38, 50, 66, 88, 116, 154, 204, 270, 358, 474, 628, 832, 1102, 1460, 1934, 2562, 3394, 4496, 5956, 7890, 10452, 13846, 18342, 24298, 32188, 42640, 56486, 74828, 99126, 131314, 173954, 230440, 305268, 404394, 535708
Offset: 1

Views

Author

Nicolas Bègue, Aug 26 2016

Keywords

Comments

Obtained from Padovan Spiral number (A134816) modulo 3 reduction periodic sequence 1112201210010, 111 112 122 220 ... fourth initialization values 220, it satisfies the same recurrence a(n) = a(n-2) + a(n-3).

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 2] + a[n - 3], a[1] == 2, a[2] == 2, a[3] == 0}, a, {n, 1, 48}] (* or *) CoefficientList[Series[2 x (1 + x - x^2)/(1 - x^2 - x^3), {x, 0, 47}], x] (* Michael De Vlieger, Sep 02 2016 *)
    LinearRecurrence[{0,1,1},{2,2,0},60] (* Harvey P. Dale, Jan 27 2023 *)

Formula

G.f.: 2*x*(1 + x - x^2)/(1 - x^2 - x^3).
a(n) = A134816(n) + A007307(n-3) for n>=4.
a(n) = 2*A084338(n-3) for n>=4.
Showing 1-4 of 4 results.