cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007369 Numbers n such that sigma(x) = n has no solution.

Original entry on oeis.org

2, 5, 9, 10, 11, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111, 113
Offset: 1

Views

Author

Keywords

Comments

With an initial 1, may be constructed inductively in stages from the list L = {1,2,3,....} by the following sieve procedure. Stage 1. Add 1 as the first term of the sequence a(n) and strike off 1 from L. Stage n+1. Add the first (i.e. leftmost) term k of L as a new term of the sequence a(n) and strike off k, sigma(k), sigma(sigma(k)),.... from L. - Joseph L. Pe, May 08 2002
This sieve is a special case of a more general sieve. Let D be a subset of N and let f be an injection on D satisfying f(n) > n. Define the sieve process as follows: 1. Start with the empty sequence S and let E = D. 2. Append the smallest element s of E to S. 3. Remove s, f(s), f(f(s)), f(f(f(s))), ... from E. 4. Go to step 2. After this sieving process, S = D - f(D). To get the current sequence, take f = sigma and D = {n | n >= 2}. - Max Alekseyev, Aug 08 2005
By analogy with the untouchable numbers (A005114), these numbers could be named "sigma-untouchable". - Daniel Lignon, Mar 28 2014
The asymptotic density of this sequence is 1 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			a(4) = 10 because there is no x < 10 whose sigma(x) = 10.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A002191.
See A083532 for the gaps, i.e., first differences.
See A048995 for the missed sums of nontrivial divisors.

Programs

  • Mathematica
    a = {}; Do[s = DivisorSigma[1, n]; a = Append[a, s], {n, 1, 115} ]; Complement[ Table[ n, {n, 1, 115} ], Union[a] ]
  • PARI
    list(lim)=my(v=List(),u=vectorsmall(lim\1),t); for(n=1,lim, t=sigma(n); if(t<=lim, u[t]=1)); for(n=2,lim, if(u[n]==0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Mar 09 2017
    
  • PARI
    A007369_list(LIM,m=0,L=List(),s)={for(n=2,LIM,(s=sigma(n-1))>LIM || bittest(m,s) || m+=1<M. F. Hasler, Mar 12 2018

Formula

A175192(a(n)) = 0, A054973(a(n)) = 0. - Jaroslav Krizek, Mar 01 2010
a(n) < 2n + sqrt(8n). - Charles R Greathouse IV, Oct 23 2015

Extensions

More terms from David W. Wilson