A007422 Multiplicatively perfect numbers j: product of divisors of j is j^2.
1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1
Examples
The divisors of 10 are 1, 2, 5, 10 and 1 * 2 * 5 * 10 = 100 = 10^2.
References
- Kenneth Ireland and Michael Ira Rosen, A Classical Introduction to Modern Number Theory. Springer-Verlag, NY, 1982, p. 19.
- Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen ueber Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- William Chau, The tau, sigma, rho functions, and some related numbers, Pi Mu Epsilon Journal, Vol. 11, No. 10 (Spring 2004), pp. 519-534; entire issue.
- József Sándor, Multiplicatively perfect numbers, J. Ineq. Pure Appl. Math., Vol. 2, No. 1 (2001), Article 3, 6 pp.
- Eric Weisstein's World of Mathematics, Divisor Product.
- Eric Weisstein's World of Mathematics, Multiplicative Perfect Number.
Crossrefs
Programs
-
Haskell
a007422 n = a007422_list !! (n-1) a007422_list = [x | x <- [1..], a007956 x == x] -- Reinhard Zumkeller, Jan 26 2014
-
Magma
IsA007422:=func< n | &*Divisors(n) eq n^2 >; [ n: n in [1..200] | IsA007422(n) ]; // Klaus Brockhaus, May 04 2011
-
Maple
k:=2: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # Walter Kehowski, Sep 13 2005 # second Maple program: q:= n-> n=1 or numtheory[tau](n)=4: select(q, [$1..200])[]; # Alois P. Heinz, Dec 17 2021
-
Mathematica
Select[Range[200], Times@@Divisors[#] == #^2 &] (* Harvey P. Dale, Mar 27 2011 *)
-
PARI
is(n)=n==1 || numdiv(n) == 4 \\ Charles R Greathouse IV, Oct 15 2015
-
Python
from math import isqrt from sympy import primepi, integer_nthroot, primerange def A007422(n): def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 16 2024
Formula
The number of terms not exceeding x is N(x) ~ x * log(log(x))/log(x) (Chau, 2004). - Amiram Eldar, Jun 29 2022
Extensions
Some numbers were omitted - thanks to Erich Friedman for pointing this out.
Comments