cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007437 Inverse Moebius transform of triangular numbers.

Original entry on oeis.org

1, 4, 7, 14, 16, 31, 29, 50, 52, 74, 67, 119, 92, 137, 142, 186, 154, 247, 191, 294, 266, 323, 277, 455, 341, 446, 430, 553, 436, 686, 497, 714, 634, 752, 674, 1001, 704, 935, 878, 1150, 862, 1298, 947, 1323, 1222, 1361, 1129, 1767, 1254, 1674, 1486, 1834
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          add(d*(d+1)/2, d=divisors(n))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 09 2011
  • Mathematica
    a[n_] := (DivisorSigma[1, n] + DivisorSigma[2, n])/2; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 10 2014, after Benoit Cloitre *)
  • PARI
    a(n)=if(n<1,1,sumdiv(n,d,(d^2+d))/2); /* Joerg Arndt, Aug 14 2012 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021

Formula

Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^3.
G.f.: Sum_{n>=1} (n*(n+1)/2) * x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
a(n) = Sum_{d|n} d*(d+1)/2 = (1/2)*(sigma(n) + sigma_2(n)) = (1/2)*(A000203(n) + A001157(n)). - Benoit Cloitre, Apr 08 2002
Row sums of triangles A134544 and A134545. - Gary W. Adamson, Oct 31 2007
Row sums of triangle A134839 - Gary W. Adamson, Nov 12 2007
Dirichlet g.f. zeta(s)*(zeta(s-1) + zeta(s-2))/2. - Franklin T. Adams-Watters, Nov 05 2009
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)/2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
Sum_{k=1..n} a(k) ~ Zeta(3) * n^3 / 6. - Vaclav Kotesovec, Nov 06 2018
a(n) = Sum_{i=1..n} i*A135539(n,i). - Ridouane Oudra, Jul 22 2022

Extensions

More terms from Christian G. Bower.