cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A301873 Expansion of Product_{k>=1} 1/(1 - x^k)^A007437(k).

Original entry on oeis.org

1, 1, 5, 12, 36, 80, 215, 476, 1154, 2539, 5772, 12417, 27146, 57111, 120822, 249389, 514201, 1041684, 2103211, 4189502, 8306632, 16296337, 31803839, 61530913, 118413823, 226200319, 429857982, 811633548, 1524828119, 2848379512, 5295550209
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 28 2018

Keywords

Comments

Euler transform of A007437.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) * x^(j*k) / (2*j), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(2^(7/4) * Pi * Zeta(3)^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) + sqrt(5*Zeta(3)*n/6)/2 - (7*Pi * 5^(1/4) / (2^(15/4) * 3^(7/4) * Zeta(3)^(1/4)) + 5^(5/4) * Zeta(3)^(3/4) / (2^(15/4) * 3^(3/4) * Pi)) * n^(1/4) + (17*Zeta(3))/(72*Pi^2) + 23/576) * A^(1/4) * Zeta(3)^(23/192) / (2^(307/192) * 15^(23/192) * n^(119/192)), where A is the Glaisher-Kinkelin constant A074962.

A301874 Expansion of Product_{k>=1} (1 + x^k)^A007437(k).

Original entry on oeis.org

1, 1, 4, 11, 27, 64, 156, 345, 779, 1706, 3665, 7742, 16207, 33300, 67830, 136526, 271969, 536588, 1049801, 2035620, 3917547, 7482738, 14192358, 26738962, 50062081, 93158467, 172366532, 317166618, 580542738, 1057269629, 1916174666
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 28 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[(DivisorSigma[1, k] + DivisorSigma[2, k]) * x^(j*k) / (2*j), {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(2*Pi * (7*Zeta(3))^(1/4) * n^(3/4) / (3^(5/4) * 5^(1/4)) + sqrt(15*Zeta(3)*n/7)/4 - (5^(1/4) * 7^(3/4) * Pi / (3^(7/4) * Zeta(3)^(1/4)) + 15^(5/4) * Zeta(3)^(3/4) / (7^(5/4)*Pi)) * n^(1/4)/16 + 75*Zeta(3) / (784*Pi^2) + 5/192) * (7*Zeta(3))^(1/8) / (2^(95/48) * 15^(1/8) * n^(5/8)).

A059358 Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^4.

Original entry on oeis.org

0, 1, 5, 11, 25, 36, 71, 85, 145, 176, 260, 287, 455, 456, 649, 726, 961, 970, 1376, 1331, 1820, 1866, 2315, 2301, 3175, 2961, 3736, 3830, 4729, 4496, 5966, 5457, 6945, 6842, 8114, 7890, 10196, 9140, 11215, 11126, 13420, 12342, 15730, 14191, 17515, 17106, 19601
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          add(d*(d+1)*(d+2)/6, d=numtheory[divisors](n))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 12 2023
  • Mathematica
    With[{nn=50},CoefficientList[Series[Sum[x^n/(1-x^n)^4,{n,nn}],{x,0,nn}],x]] (* Harvey P. Dale, May 14 2013 *)
  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, binomial(d+2, 3))); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = if(n==0, 0, my(f = factor(n)); (sigma(f, 3) + 3*sigma(f, 2) + 2 * sigma(f)) / 6); \\ Amiram Eldar, Dec 29 2024

Formula

a(n) = (1/6)*(sigma_3(n) + 3*sigma_2(n) + 2*sigma_1(n)), i.e., this sequence is the inverse Möbius transform of tetrahedral (or pyramidal) numbers: n*(n+1)(n+2)/6 with g.f. 1/(1-x)^4 (cf. A000292). - Vladeta Jovovic, Aug 31 2002
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)*(k+2)/6)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Amiram Eldar, Dec 29 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A069153 a(n) = Sum_{d|n} d*(d-1)/2.

Original entry on oeis.org

0, 1, 3, 7, 10, 19, 21, 35, 39, 56, 55, 91, 78, 113, 118, 155, 136, 208, 171, 252, 234, 287, 253, 395, 310, 404, 390, 497, 406, 614, 465, 651, 586, 698, 626, 910, 666, 875, 822, 1060, 820, 1202, 903, 1239, 1144, 1289, 1081, 1643, 1197, 1581, 1414, 1736
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009

Examples

			x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
  • Mathematica
    A069153[n_]:=Plus@@Binomial[Divisors[n],2];Array[A069153,100] (* Enrique Pérez Herrero, Feb 21 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
a(n) = (1/2)*(sigma_2(n) - sigma_1(n)) = (1/2)*(A001157(n) A000203(n)) = (1/2)*A086666.
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)

A073570 G.f.: Sum_{n >= 1} x^n/(1-x^n)^5.

Original entry on oeis.org

1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2002

Keywords

Comments

Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[4,n]+6*DivisorSigma[3,n]+11*DivisorSigma[2,n]+ 6*DivisorSigma[ 1,n])/24,{n,40}] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 6*sigma(f, 3) + 11*sigma(f, 2) + 6*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (1/24) * (sigma_4(n) + 6*sigma_3(n) + 11*sigma_2(n) + 6*sigma_1(n)).
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 6*zeta(s-3) + 11*zeta(s-2) + 6*zeta(s-2)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A116963 Inverse Moebius transform of the shifted tetrahedral numbers.

Original entry on oeis.org

4, 14, 24, 49, 60, 118, 124, 214, 244, 356, 368, 608, 564, 814, 896, 1183, 1144, 1668, 1544, 2162, 2168, 2678, 2604, 3698, 3336, 4228, 4304, 5344, 4964, 6732, 5988, 7728, 7528, 8924, 8616, 11297, 9884, 12214, 12064, 14668, 13248, 17132, 15184, 18928, 18412, 21038
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Examples

			a(12) = ((1+1)*(1+2)*(1+3)/6) + ((2+1)*(2+2)*(2+3)/6) + ((3+1)*(3+2)*(3+3)/6) + ((4+1)*(4+2)*(4+3)/6) + ((6+1)*(6+2)*(6+3)/6) + ((12+1)*(12+2)*(12+3)/6) = 4 + 10 + 20 + 35 + 84 + 455 = 608.
a(13) = ((1+1)*(1+2)*(1+3)/6) + ((13+1)*(13+2)*(13+3)/6) = 4 + 560 = 564.
		

Crossrefs

See also: A007437 (inverse Moebius transform of triangular numbers).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, 1/(1-x^k)^4-1)) \\ Seiichi Manyama, Jun 12 2023

Formula

a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)/6 = Sum_{d|n} A000292(d+1).
G.f.: Sum_{k>0} (1/(1-x^k)^4 - 1). - Seiichi Manyama, Jun 12 2023
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_3(n) + 6*sigma_2(n) + 11*sigma_1(n) + 6*sigma_0(n))/6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 6*zeta(s-2) + 11*zeta(s-1) + 6*zeta(s)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A101289 Inverse Moebius transform of 5-simplex numbers A000389.

Original entry on oeis.org

1, 7, 22, 63, 127, 280, 463, 855, 1309, 2135, 3004, 4704, 6189, 9037, 11776, 16359, 20350, 27901, 33650, 44695, 53614, 68790, 80731, 103776, 118882, 148701, 171220, 210469, 237337, 292292, 324633, 393351, 438922, 522298, 576346, 690333, 749399
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2006

Keywords

Comments

From Georg Fischer, Aug 06 2025: (Start)
The general pattern is a(n) = Sum_{d|n} (Product_{k=0..m-1} d+k)/m! = Sum_{d|n} binomial(d+m-1, m) = Sum{d|n} Axxxxxx(d), with:
m Axxxxxx resulting sequence
------------------------------
5 A000389 A101289 (this sequence)
The other formulas generalize correspondingly.
A116989 uses A000579 and m=6 within a modified formula.
(End)

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 5)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+4, 5)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n));  (sigma(f, 5) + 10*sigma(f, 4) + 35*sigma(f, 3) + 50*sigma(f, 2) + 24*sigma(f))/120; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = Sum_{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)/120 = Sum_{d|n} C(d+4,5) = Sum{d|n} A000389(d) = Sum_{d|n} (d^5+10*d^4+35*d^3+50*d^2+24*d)/120.
G.f.: Sum_{k>=1} x^k/(1 - x^k)^6 = Sum_{k>=1} binomial(k+4,5) * x^k/(1 - x^k). - Seiichi Manyama, Apr 19 2021
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 10*sigma_4(n) + 35*sigma_3(n) + 50*sigma_2(n) + 24*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 10*zeta(s-4) + 35*zeta(s-3) + 50*zeta(s-2) + 24*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A309731 Expansion of Sum_{k>=1} k * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 5, 9, 20, 20, 48, 35, 76, 72, 110, 77, 204, 104, 196, 210, 288, 170, 405, 209, 480, 378, 440, 299, 816, 425, 598, 594, 868, 464, 1200, 527, 1104, 858, 986, 910, 1800, 740, 1216, 1170, 1960, 902, 2184, 989, 1980, 1890, 1748, 1175, 3216, 1470, 2475, 1938, 2704, 1484, 3456, 2090
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Dirichlet convolution of natural numbers (A000027) with triangular numbers (A000217).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n*(tau(n)+sigma(n))/2, n=1..30); # Ridouane Oudra, Nov 28 2019
  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[k x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DirichletConvolve[j, j (j + 1)/2, j, n], {n, 1, 55}]
    Table[n (DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 55}]
  • PARI
    a(n)=sumdiv(n,d,binomial(n/d+1,2)*d); \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)=n*(numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Apr 19 2021

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k/(1 - x^k)^2.
a(n) = n * (d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-1) * (zeta(s-2) + zeta(s-1))/2.
a(n) = Sum_{k=1..n} k*tau(gcd(n,k)). - Ridouane Oudra, Nov 28 2019

A332508 a(n) = Sum_{d|n} binomial(n+d-2, n-1).

Original entry on oeis.org

1, 3, 7, 25, 71, 280, 925, 3561, 12916, 49346, 184757, 710255, 2704157, 10427747, 40119781, 155288897, 601080391, 2334714319, 9075135301, 35352181116, 137846759282, 538302226628, 2104098963721, 8233718962365, 32247603703576, 126412458920775, 495918551104687
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Binomial[n + # - 2, n - 1] &], {n, 1, 27}]
    Table[SeriesCoefficient[Sum[x^k/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 1, 27}]
  • PARI
    a(n) = sumdiv(n, d, binomial(n+d-2, n-1)); \\ Michel Marcus, Feb 14 2020

Formula

a(n) = [x^n] Sum_{k>=1} x^k / (1 - x^k)^n.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 04 2022

A343548 a(n) = Sum_{d|n} binomial(d+n-1,n).

Original entry on oeis.org

1, 4, 11, 41, 127, 498, 1717, 6610, 24366, 93391, 352717, 1358826, 5200301, 20097076, 77562773, 300786339, 1166803111, 4539163784, 17672631901, 68933291834, 269129233484, 1052113994124, 4116715363801, 16124221819056, 63205303242628, 247961973949228, 973469736360283
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n - 1, n] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+n-1, n));

Formula

a(n) = [x^n] Sum_{k>=1} x^k/(1 - x^k)^(n+1).
a(n) = [x^n] Sum_{k>=1} binomial(k+n-1,n) * x^k/(1 - x^k).
Showing 1-10 of 32 results. Next