cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A059358 Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^4.

Original entry on oeis.org

0, 1, 5, 11, 25, 36, 71, 85, 145, 176, 260, 287, 455, 456, 649, 726, 961, 970, 1376, 1331, 1820, 1866, 2315, 2301, 3175, 2961, 3736, 3830, 4729, 4496, 5966, 5457, 6945, 6842, 8114, 7890, 10196, 9140, 11215, 11126, 13420, 12342, 15730, 14191, 17515, 17106, 19601
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          add(d*(d+1)*(d+2)/6, d=numtheory[divisors](n))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 12 2023
  • Mathematica
    With[{nn=50},CoefficientList[Series[Sum[x^n/(1-x^n)^4,{n,nn}],{x,0,nn}],x]] (* Harvey P. Dale, May 14 2013 *)
  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, binomial(d+2, 3))); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = if(n==0, 0, my(f = factor(n)); (sigma(f, 3) + 3*sigma(f, 2) + 2 * sigma(f)) / 6); \\ Amiram Eldar, Dec 29 2024

Formula

a(n) = (1/6)*(sigma_3(n) + 3*sigma_2(n) + 2*sigma_1(n)), i.e., this sequence is the inverse Möbius transform of tetrahedral (or pyramidal) numbers: n*(n+1)(n+2)/6 with g.f. 1/(1-x)^4 (cf. A000292). - Vladeta Jovovic, Aug 31 2002
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)*(k+2)/6)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Amiram Eldar, Dec 29 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) + 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A073570 G.f.: Sum_{n >= 1} x^n/(1-x^n)^5.

Original entry on oeis.org

1, 6, 16, 41, 71, 147, 211, 371, 511, 791, 1002, 1547, 1821, 2596, 3146, 4247, 4846, 6627, 7316, 9681, 10852, 13657, 14951, 19427, 20546, 25577, 27916, 34096, 35961, 44912, 46377, 56607, 59922, 70896, 74096, 90278, 91391, 108591, 113766, 133421
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2002

Keywords

Comments

Inverse Moebius transform of pentatope numbers. - Jonathan Vos Post, Mar 31 2006

Crossrefs

Programs

  • Mathematica
    Table[(DivisorSigma[4,n]+6*DivisorSigma[3,n]+11*DivisorSigma[2,n]+ 6*DivisorSigma[ 1,n])/24,{n,40}] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+3, 4)); \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+3, 4)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 6*sigma(f, 3) + 11*sigma(f, 2) + 6*sigma(f)) / 24; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (1/24) * (sigma_4(n) + 6*sigma_3(n) + 11*sigma_2(n) + 6*sigma_1(n)).
a(n) = Sum_{d|n} (d+1)*(d+2)*(d+3)*(d+4)/24 = Sum_{d|n} C(d+3,4) = Sum_{d|n} A000332(d+3). - Jonathan Vos Post, Mar 31 2006. Corrected by Joshua Zucker, May 04 2007
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-4) + 6*zeta(s-3) + 11*zeta(s-2) + 6*zeta(s-2)) / 24.
Sum_{k=1..n} a(k) ~ (zeta(5)/120) * n^5. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007

A332508 a(n) = Sum_{d|n} binomial(n+d-2, n-1).

Original entry on oeis.org

1, 3, 7, 25, 71, 280, 925, 3561, 12916, 49346, 184757, 710255, 2704157, 10427747, 40119781, 155288897, 601080391, 2334714319, 9075135301, 35352181116, 137846759282, 538302226628, 2104098963721, 8233718962365, 32247603703576, 126412458920775, 495918551104687
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Binomial[n + # - 2, n - 1] &], {n, 1, 27}]
    Table[SeriesCoefficient[Sum[x^k/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 1, 27}]
  • PARI
    a(n) = sumdiv(n, d, binomial(n+d-2, n-1)); \\ Michel Marcus, Feb 14 2020

Formula

a(n) = [x^n] Sum_{k>=1} x^k / (1 - x^k)^n.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 04 2022

A343548 a(n) = Sum_{d|n} binomial(d+n-1,n).

Original entry on oeis.org

1, 4, 11, 41, 127, 498, 1717, 6610, 24366, 93391, 352717, 1358826, 5200301, 20097076, 77562773, 300786339, 1166803111, 4539163784, 17672631901, 68933291834, 269129233484, 1052113994124, 4116715363801, 16124221819056, 63205303242628, 247961973949228, 973469736360283
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n - 1, n] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+n-1, n));

Formula

a(n) = [x^n] Sum_{k>=1} x^k/(1 - x^k)^(n+1).
a(n) = [x^n] Sum_{k>=1} binomial(k+n-1,n) * x^k/(1 - x^k).

A343546 a(n) = n * Sum_{d|n} binomial(d+4,5)/d.

Original entry on oeis.org

1, 8, 24, 72, 131, 318, 469, 936, 1359, 2294, 3014, 5172, 6201, 9548, 12126, 17376, 20366, 29862, 33668, 47372, 54684, 71874, 80753, 111000, 119410, 154986, 173988, 220864, 237365, 309864, 324663, 411744, 445170, 542776, 578984, 731340, 749435, 918118, 981474
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, Binomial[# + 4, 5]/# &]; Array[a, 40] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = n*sumdiv(n, d, binomial(d+4, 5)/d);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+4, 5)*x^k/(1-x^k)^2))

Formula

G.f.: Sum_{k>=1} k * x^k/(1 - x^k)^6 = Sum_{k>=1} binomial(k+4,5) * x^k/(1 - x^k)^2.

A363696 Expansion of Sum_{k>0} (1/(1-x^k)^6 - 1).

Original entry on oeis.org

6, 27, 62, 153, 258, 545, 798, 1440, 2064, 3282, 4374, 6859, 8574, 12447, 15818, 21789, 26340, 36196, 42510, 56538, 66634, 85125, 98286, 126901, 142764, 178506, 203440, 249909, 278262, 343936, 376998, 457686, 506372, 602118, 659058, 791908, 850674, 1005129, 1094638
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 5, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+5, 5));

Formula

G.f.: Sum_{k>0} binomial(k+5,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+5,5).

A116989 a(n) = b(A000579(n+6)) with b(n) = Sum{d|n} d*(d+1)*(d+2)*(d+3)*(d+4)*(d+5)/720.

Original entry on oeis.org

1, 925, 1135716, 593223373, 130220375812, 14195655302684, 893936543319276, 36397263567477054, 1025115791220794876, 21899052879460199956, 372805053916689840596, 5076066733212581886566, 57875038239259949679248
Offset: 0

Views

Author

Jonathan Vos Post, Apr 02 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(binomial(n+6, 6), d, d*(d+1)*(d+2)*(d+3)*(d+4)*(d+5)/720) /* Georg Fischer, Aug 03 2025 */

Extensions

Definition corrected by Georg Fischer, Aug 03 2025

A366986 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{d|n} binomial(d+k-1,k).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 4, 3, 1, 5, 7, 7, 2, 1, 6, 11, 14, 6, 4, 1, 7, 16, 25, 16, 12, 2, 1, 8, 22, 41, 36, 31, 8, 4, 1, 9, 29, 63, 71, 71, 29, 15, 3, 1, 10, 37, 92, 127, 147, 85, 50, 13, 4, 1, 11, 46, 129, 211, 280, 211, 145, 52, 18, 2, 1, 12, 56, 175, 331, 498, 463, 371, 176, 74, 12, 6
Offset: 1

Views

Author

Seiichi Manyama, Oct 31 2023

Keywords

Examples

			Square  array begins:
  1,  1,  1,  1,   1,   1,   1, ...
  2,  3,  4,  5,   6,   7,   8, ...
  2,  4,  7, 11,  16,  22,  29, ...
  3,  7, 14, 25,  41,  63,  92, ...
  2,  6, 16, 36,  71, 127, 211, ...
  4, 12, 31, 71, 147, 280, 498, ...
  2,  8, 29, 85, 211, 463, 925, ...
		

Crossrefs

Columns k=0..5 give A000005, A000203, A007437, A059358, A073570, A101289.
T(n,n-1) gives A332508.
T(n,n) gives A343548.
Cf. A366977.

Programs

  • PARI
    T(n, k) = sumdiv(n, d, binomial(d+k-1, k));

Formula

G.f. of column k: Sum_{j>=1} x^j/(1 - x^j)^(k+1).
Showing 1-8 of 8 results.