cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007503 Number of subgroups of dihedral group: sigma(n) + d(n).

Original entry on oeis.org

2, 5, 6, 10, 8, 16, 10, 19, 16, 22, 14, 34, 16, 28, 28, 36, 20, 45, 22, 48, 36, 40, 26, 68, 34, 46, 44, 62, 32, 80, 34, 69, 52, 58, 52, 100, 40, 64, 60, 98, 44, 104, 46, 90, 84, 76, 50, 134, 60, 99, 76, 104, 56, 128, 76, 128, 84, 94, 62, 180, 64, 100, 110, 134
Offset: 1

Views

Author

Keywords

Comments

Essentially first differences of A257644. - Franklin T. Adams-Watters, Nov 05 2015
Write D_{2n} as , then the subgroups are of the form for d|n or for d|n and 0 <= r < d. There are d(n) subgroups of the first type and sigma(n) subgroups of the second type. - Jianing Song, Jul 21 2022
Inverse Möbius transform of n+1 (see Arndt formula). - Wesley Ivan Hurt, Jul 05 2025

Examples

			a(4) = 10 since D_8 = <a, x | a^4 = x^2 = 1, x*a*x = a^(-1)> has 10 subgroups. The 6 subgroups {e}, {e,a^2}, {e,a,a^2,a^3}, {e,a^2,x,a^2*x}, {e,a^2,a*x,a^3*x} and D_8 are normal, and the 4 subgroups {e,x}, {e,a*x}, {e,a^2*x} and {e,a^3*x} are not. - _Jianing Song_, Jul 21 2022
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A037852 (number of normal subgroups).
Cf. A027750, A257644 (cumulative sums, start=1).

Programs

Formula

G.f.: Sum_{k>=1} 1/(1-x^k)^2. - Benoit Cloitre, Apr 21 2003
G.f.: Sum_{i>=1} (1+i)*x^i/(1-x^i). - Jon Perry, Jul 03 2004
a(n) = Sum_{d|n} tau(p^d), where tau is A000005 and p any prime. - Enrique Pérez Herrero, Apr 14 2012
a(n) = Sum_{d divides n} d+1. - Joerg Arndt, Apr 14 2013
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(1+1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
a(n) = A000005(n) + A000203(n). - Omar E. Pol, Aug 19 2019
a(n) = A348219(n) + A386438(n). - Wesley Ivan Hurt, Jul 21 2025