A007520 Primes == 3 (mod 8).
3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Alexander Kalmynin, On Novák numbers, arXiv:1611.00417 [math.NT], 2016. See P0 in Theorem 7 p. 11.
Programs
-
Magma
[p: p in PrimesUpTo(2000) | p mod 8 eq 3]; // Vincenzo Librandi, Aug 07 2012
-
Maple
A007520 := proc(n) option remember; local a; if n = 1 then return 3; end if; a := nextprime(procname(n-1)) ; while modp(a,8) <> 3 do a := nextprime(a) ; end do: a ; end proc: seq(A007520(n),n=1..30) ; # R. J. Mathar, Apr 07 2017
-
Mathematica
lst={};Do[p=8*n+3;If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 22 2008 *) p=3;k=0;nn=1000;Reap[While[k
Zak Seidov, Dec 06 2011 *) Select[Prime[Range[200]],Mod[#,8]==3&] (* Harvey P. Dale, Apr 05 2023 *) -
PARI
forprime(p=2,97,if(p%8==3,print1(p", "))) \\ Charles R Greathouse IV, Aug 17 2011
Comments