cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007570 a(n) = F(F(n)), where F is a Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 21, 233, 10946, 5702887, 139583862445, 1779979416004714189, 555565404224292694404015791808, 2211236406303914545699412969744873993387956988653, 2746979206949941983182302875628764119171817307595766156998135811615145905740557
Offset: 0

Views

Author

Keywords

Comments

a(20) is approximately 2.830748520089124 * 10^1413, much too large to include even in the b-file. - Alonso del Arte, Apr 30 2020
Let M(0) denote the 2 X 2 identity matrix, and let M(1) = [[0, 1], [1, 1]]. Let M(n) = M(n-2) * M(n-1). Then a(n) is equal to both the (1, 2)-entry and the (2, 1)-entry of M(n). - John M. Campbell, Jul 02 2021
This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 06 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> F(F(n)):
    seq(a(n), n=0..14);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}]
    Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *)
  • PARI
    a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    
  • Python
    from sympy import fibonacci
    def a(n): return fibonacci(fibonacci(n))
    print([a(n) for n in range(15)]) # Michael S. Branicky, Feb 02 2022
  • Sage
    [fibonacci(fibonacci(n)) for n in range(0, 14)] # Zerinvary Lajos, Nov 30 2009
    
  • Scala
    val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 }
    val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply()
    (0 to 19).map(n => fibo(fiboLimited(n))) // Alonso del Arte, Apr 30 2020
    

Formula

a(n+1)/a(n) ~ phi^(F(n-1)), with phi = (1 + sqrt(5))/2 = A001622. - Carmine Suriano, Jan 24 2011
Sum_{n>=1} 1/a(n) = 3.7520024260... is transcendental (Stein, 2012). - Amiram Eldar, Oct 30 2020
Sum_{n>=1} (-1)^(F(n)+1)*a(n-1)/(a(n)*a(n+1)) = 1/phi (A094214) (Farhi, 2015). - Amiram Eldar, Apr 07 2021
Limit_{n->oo} a(n+1)/a(n)^phi = 5^((phi-1)/2) = 1.6443475285..., where phi is the golden ratio (A001622) (Ledin, 1968) - Amiram Eldar, Feb 02 2022

Extensions

One more term from Harvey P. Dale, May 05 2012