A007570 a(n) = F(F(n)), where F is a Fibonacci number.
0, 1, 1, 1, 2, 5, 21, 233, 10946, 5702887, 139583862445, 1779979416004714189, 555565404224292694404015791808, 2211236406303914545699412969744873993387956988653, 2746979206949941983182302875628764119171817307595766156998135811615145905740557
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..19 (terms n = 0..17 from T. D. Noe)
- Alonso del Arte, Table of n, a(n) for n = 0 .. 24, with digits grouped in hundreds
- John M. Campbell, A Matrix-Based Recursion Relation for F_{F_n}, Fib. Quart., Vol. 60, No. 3 (2022), pp. 256-261.
- Bakir Farhi, Summation of certain infinite Fibonacci related series, arXiv:1512.09033 [math.NT], 2015. See p. 6, eq. 2.9.
- George Ledin, Jr., Problem H-147, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 6, No. 6 (1968), p. 352; Converging Fractions, Solution to Problem H-147 by David Zeitlin, ibid., Vol. 8, No. 4 (1970), pp. 387-389.
- Edward A. Parberry, Two recursion relations for F(F(n)), Fib. Quart., Vol. 15, No. 2 (1977), p. 122 and p. 139.
- Martin Stein, Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers, Dissertation, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2012.
- Chris Street, A Recurrence for the Sequence {F(F(n)), n>=0}.
Programs
-
Maple
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]: a:= n-> F(F(n)): seq(a(n), n=0..14); # Alois P. Heinz, Oct 09 2015
-
Mathematica
F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}] Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *)
-
PARI
a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
-
Python
from sympy import fibonacci def a(n): return fibonacci(fibonacci(n)) print([a(n) for n in range(15)]) # Michael S. Branicky, Feb 02 2022
-
Sage
[fibonacci(fibonacci(n)) for n in range(0, 14)] # Zerinvary Lajos, Nov 30 2009
-
Scala
val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 } val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply() (0 to 19).map(n => fibo(fiboLimited(n))) // Alonso del Arte, Apr 30 2020
Formula
a(n+1)/a(n) ~ phi^(F(n-1)), with phi = (1 + sqrt(5))/2 = A001622. - Carmine Suriano, Jan 24 2011
Sum_{n>=1} 1/a(n) = 3.7520024260... is transcendental (Stein, 2012). - Amiram Eldar, Oct 30 2020
Sum_{n>=1} (-1)^(F(n)+1)*a(n-1)/(a(n)*a(n+1)) = 1/phi (A094214) (Farhi, 2015). - Amiram Eldar, Apr 07 2021
Limit_{n->oo} a(n+1)/a(n)^phi = 5^((phi-1)/2) = 1.6443475285..., where phi is the golden ratio (A001622) (Ledin, 1968) - Amiram Eldar, Feb 02 2022
Extensions
One more term from Harvey P. Dale, May 05 2012
Comments