cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A212556 Representations of nonnegative integers in base -4: The range of A007608.

Original entry on oeis.org

0, 1, 2, 3, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333, 10000
Offset: 1

Views

Author

M. F. Hasler, May 20 2012

Keywords

Comments

Also: Numbers with an odd number of digits, using only digits 0 through 3.
(These numbers (or strings of digits) represent nonnegative integers in base -4, while the same type of numbers with an even number of digits represent negative numbers. See references in A007608 for more information.)

Crossrefs

The same as A007608 sorted in increasing order.

Programs

  • PARI
    {forstep(d=1,3,2, my(u=vector(d,i,10^(d-i))~); forvec(v=vector(d,i,[i==1 & d>1,3]),print1(v*u",")))}
    
  • PARI
    is_A212556(n)==(#n=Str(n))%2 & !setminus(Set(Vec(n)),Vec("0123"))

A007090 Numbers in base 4.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 123, 130, 131, 132, 133, 200, 201, 202, 203, 210, 211, 212, 213, 220, 221, 222, 223, 230, 231, 232, 233, 300, 301, 302, 303, 310, 311, 312, 313, 320, 321, 322, 323, 330, 331, 332, 333
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digit > 3. Thus nonnegative integers in base 10 whose tripling (trebling) by normal addition or multiplication requires no carry operation. - Rick L. Shepherd, Jun 25 2009
Interpreted in base 10: a(x)+a(y) = a(z) => x+y = z. The converse is not true in general. - Karol Bacik, Sep 27 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007608, A000042, A007088 (base 2), A007089 (base 3), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007094 (base 8), A007095 (base 9), A193890, A107715.

Programs

  • Haskell
    a007090 0 = 0
    a007090 n = 10 * a007090 n' + m where (n', m) = divMod n 4
    -- Reinhard Zumkeller, Apr 08 2013, Aug 11 2011
  • Maple
    A007090 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,4): return op(convert(l,base,10,10^nops(l))): end: seq(A007090(n),n=0..54); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 4]], {n, 0, 60}]
  • PARI
    a(n)=if(n<1,0,if(n%4,a(n-1)+1,10*a(n/4)))
    
  • PARI
    A007090(n)=sum(i=1,#n=digits(n,4),n[i]*10^(#n-i)) \\ M. F. Hasler, Jul 25 2015 (Corrected by Jinyuan Wang, Oct 02 2019)
    
  • PARI
    apply( A007090(n)=fromdigits(digits(n,4)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    

Formula

a(n) = Sum_{d(i)*10^i: i=0, 1, ..., m}, where Sum_{d(i)*4^i: i=0, 1, ..., m} is the base 4 representation of n.
a(0) = 0, a(n) = 10*a(n/4) if n==0 (mod 4), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002

A039724 a(n) is the negabinary expansion of n, that is, the expansion of n in base -2.

Original entry on oeis.org

0, 1, 110, 111, 100, 101, 11010, 11011, 11000, 11001, 11110, 11111, 11100, 11101, 10010, 10011, 10000, 10001, 10110, 10111, 10100, 10101, 1101010, 1101011, 1101000, 1101001, 1101110, 1101111, 1101100, 1101101, 1100010, 1100011, 1100000, 1100001, 1100110, 1100111, 1100100
Offset: 0

Views

Author

Robert Lozyniak (11(AT)onna.com)

Keywords

Comments

The numbers written in base -2.
a(A007583(n)) are the only terms with all 1s digits; the number of digits = 2n + 1. - Bob Selcoe, Aug 21 2016

Examples

			2 = 4 + (-2) + 0 = 110_(-2), 3 = 4 + (-2) + 1 = 111_(-2), ..., 6 = 16 + (-8) + 0 + (-2) + 0 = 11010_(-2).
		

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Nonnegative numbers in negative bases: A039723 (b=-10), this sequence (b=-2), A073785 (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).
Cf. A212529 (negative numbers in base -2).

Programs

  • Haskell
    a039724 0 = 0
    a039724 n = a039724 n' * 10 + m where
       (n', m) = if r < 0 then (q + 1, r + 2) else (q, r)
                 where (q, r) = quotRem n (negate 2)
    -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    f:= proc(n) option remember; 10*floor((n mod 4)/2) + (n mod 2) + 100*procname(round(n/4)) end proc:
    f(0):= 0:
    seq(f(i),i=0..100); # Robert Israel, Feb 24 2016
  • Mathematica
    ToNegaBases[ i_Integer, b_Integer ] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[ (#1 - Mod[ #1, b ])/-b &, i, #1 != 0 & ], b ] ] ] ]; Table[ ToNegaBases[ n, 2 ], {n, 0, 31} ]
  • PARI
    A039724(n)=if(n,A039724(n\(-2))*10+bittest(n,0)) \\ M. F. Hasler, Oct 16 2018
  • Python
    def A039724(n):
        s, q = '', n
        while q >= 2 or q < 0:
            q, r = divmod(q, -2)
            if r < 0:
                q += 1
                r += 2
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016
    

Formula

G.f. g(x) satisfies g(x) = (x + 10*x^2 + 11*x^3)/(1 - x^4) + 100(1 + x + x^2 + x^3)*g(x^4)/x^2. - Robert Israel, Feb 24 2016

Extensions

More terms from Eric W. Weisstein

A066321 Binary representation of base-(i-1) expansion of n: replace i-1 with 2 in base-(i-1) expansion of n.

Original entry on oeis.org

0, 1, 12, 13, 464, 465, 476, 477, 448, 449, 460, 461, 272, 273, 284, 285, 256, 257, 268, 269, 3280, 3281, 3292, 3293, 3264, 3265, 3276, 3277, 3088, 3089, 3100, 3101, 3072, 3073, 3084, 3085, 3536, 3537, 3548, 3549, 3520, 3521, 3532, 3533, 3344, 3345, 3356
Offset: 0

Views

Author

Marc LeBrun, Dec 14 2001

Keywords

Comments

Here i = sqrt(-1).
First differences follow a strange period-16 pattern: 1 11 1 XXX 1 11 1 -29 1 11 1 -189 1 11 1 -29 where XXX is given by A066322. Number of one-bits is A066323.
From Andrey Zabolotskiy, Feb 06 2017: (Start)
(Observations.)
Actually, the sequence of the first differences can be split into blocks of size of any power of 2, and there will be only one position in the block that does not repeat. In this sense, one may say that the first differences follow (almost-)period-2^s pattern for any s > 0.
Specifically, the first differences are given by the formula: a(n+1)-a(n) = A282137(A007814((n xor ...110011001100) + 1)). Here binary representation of n is bitwise-xored with the period-4 bit sequence (A021913 written right-to-left) which is infinite or simply long enough; A007814(m) does not depend on the bits of m other than the least significant 1.
A282137 gives all first differences in the order of decreasing occurrence frequency.
(End)
Penney shows that since (i-1)^4 = -4, the representation a(n) of a real integer n is found by writing n in base -4 using digits 0 to 3 (A007608), changing those digits to bit strings 0000, 0001, 1100, 1101 respectively, and interpreting as binary. - Kevin Ryde, Sep 07 2019

Examples

			a(4) = 464 = 2^8 + 2^7 + 2^6 + 2^4 since (i-1)^8 + (i-1)^7 + (i-1)^6 + (i-1)^4 = 4.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 172. (See also exercise 16, p. 177; answer, p. 494.)

Crossrefs

See A271472 for the conversion of these decimal numbers to binary.
See A009116 and A009545 for real and imaginary parts of (i-1)^n (except for signs).
See A256441 for expansions of -n.

Programs

  • Maple
    f:= proc(n) option remember; local t,m;
       t:= n mod 4;
       procname(t) + 16*procname((t-n)/4)
    end proc:
    f(0):= 0: f(1):= 1: f(2):= 12: f(3):= 13:
    seq(f(i),i=0..100); # Robert Israel, Oct 21 2016
  • PARI
    a(n) = my(ret=0,p=0); while(n, ret+=[0,1,12,13][n%4+1]<Kevin Ryde, Sep 07 2019
  • Perl
    See Links section.
    
  • Python
    from gmpy2 import c_divmod
    u = ('0000','1000','0011','1011')
    def A066321(n):
        if n == 0:
            return 0
        else:
            s, q = '', n
            while q:
                q, r = c_divmod(q, -4)
                s += u[r]
            return int(s[::-1],2) # Chai Wah Wu, Apr 09 2016
    

Formula

In "rebase notation" a(n) = (i-1)[n]2.
G.f. g(z) satisfies g(z) = z*(1+12*z+13*z^2)/(1-z^4) + 16*z^4*(13+12*z^4+z^8)/((1-z)*(1+z^4)*(1+z^8)) + 256*(1-z^16)*g(z^16)/(z^12-z^13). - Robert Israel, Oct 21 2016

A342726 Niven numbers in base i-1: numbers that are divisible by the sum of their digits in base i-1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 16, 18, 20, 24, 25, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 60, 64, 65, 66, 70, 77, 80, 88, 90, 96, 99, 100, 110, 112, 120, 124, 125, 126, 130, 140, 144, 145, 147, 150, 156, 160, 168, 170, 180, 182, 184, 185, 186, 190, 192
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Numbers k that are divisible by A066323(k).
Equivalently, Niven numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.

Examples

			2 is a term since its representation in base i-1 is 1100 and 1+1+0+0 = 2 is a divisor of 2.
10 is a term since its representation in base i-1 is 111001100 and 1+1+1+0+0+1+1+0+0 = 5 is a divisor of 10.
		

Crossrefs

Similar sequences: A005349 (decimal), A049445 (binary), A064150 (ternary), A064438 (quaternary), A064481 (base 5), A118363 (factorial), A328208 (Zeckendorf), A328212 (lazy Fibonacci), A331085 (negaFibonacci), A333426 (primorial), A334308 (base phi), A331728 (negabinary), A342426 (base 3/2).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := Divisible[n, Total[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]]; Select[Range[200], q]

A039723 Numbers in base -10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 150, 151, 152, 153, 154, 155
Offset: 0

Views

Author

Robert Lozyniak (11(AT)onna.com)

Keywords

Examples

			Decimal 25 is "185" in base -10 because 100 - 80 + 5 = 25.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Nonnegative numbers in negative bases: this sequence (b=-10), A039724 (b=-2), A073785 (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).
Cf. A051022.
Cf. A305238: negative numbers in base -10.

Programs

  • Haskell
    a039723 0 = 0
    a039723 n = a039723 n' * 10 + m where
       (n',m) = if r < 0 then (q + 1, r + 10) else qr where
                qr@(q, r) = quotRem n (negate 10)
    -- Reinhard Zumkeller, Apr 20 2011
    
  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits@ Rest@ Reverse@ Mod[ NestWhileList[(# - Mod[ #, b])/-b &, i, # != 0 &], b]
  • PARI
    A039723 = base(n, b=-10) = if(n, base(n\b, b)*10 + n%b, 0) \\ M. F. Hasler, Oct 16 2018 [Corrected by Jianing Song, Oct 21 2018]
  • Python
    def A039723(n):
        s, q = '', n
        while q >= 10 or q < 0:
            q, r = divmod(q, -10)
            if r < 0:
                q += 1
                r += 10
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 10 2016
    

A073785 Numbers in base -3.

Original entry on oeis.org

0, 1, 2, 120, 121, 122, 110, 111, 112, 100, 101, 102, 220, 221, 222, 210, 211, 212, 200, 201, 202, 12020, 12021, 12022, 12010, 12011, 12012, 12000, 12001, 12002, 12120, 12121, 12122, 12110, 12111, 12112, 12100, 12101, 12102, 12220, 12221, 12222
Offset: 0

Views

Author

Robert G. Wilson v, Aug 11 2002

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Cf. A007089.
Nonnegative numbers in negative bases: A039723 (b=-10), A039724 (b=-2), this sequence (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).
Cf. A320636 (negative numbers in base -3).

Programs

  • Haskell
    a073785 0 = 0
    a073785 n = a073785 n' * 10 + m where
       (n', m) = if r < 0 then (q + 1, r + 3) else (q, r)
                 where (q, r) = quotRem n (negate 3)
    -- Reinhard Zumkeller, Jul 07 2012
    
  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 3], {n, 0, 45}]
  • PARI
    A073785 = base(n, b=-3) = if(n, base(n\b, b)*10 + n%b, 0) \\ Jianing Song, Oct 20 2018
  • Python
    def A073785(n):
        s, q = '', n
        while q >= 3 or q < 0:
            q, r = divmod(q, -3)
            if r < 0:
                q += 1
                r += 3
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016
    

A073786 Numbers in base -5.

Original entry on oeis.org

0, 1, 2, 3, 4, 140, 141, 142, 143, 144, 130, 131, 132, 133, 134, 120, 121, 122, 123, 124, 110, 111, 112, 113, 114, 100, 101, 102, 103, 104, 240, 241, 242, 243, 244, 230, 231, 232, 233, 234, 220, 221, 222, 223, 224, 210, 211, 212, 213, 214, 200, 201, 202, 203
Offset: 0

Views

Author

Robert G. Wilson v, Aug 11 2002

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Programs

  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 5], {n, 0, 55}]
  • Python
    def A073786(n):
        s, q = '', n
        while q >= 5 or q < 0:
            q, r = divmod(q, -5)
            if r < 0:
                q += 1
                r += 5
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016

A073787 Numbers in base -6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 150, 151, 152, 153, 154, 155, 140, 141, 142, 143, 144, 145, 130, 131, 132, 133, 134, 135, 120, 121, 122, 123, 124, 125, 110, 111, 112, 113, 114, 115, 100, 101, 102, 103, 104, 105, 250, 251, 252, 253, 254, 255, 240, 241, 242, 243, 244, 245
Offset: 0

Views

Author

Robert G. Wilson v, Aug 11 2002

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Programs

  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 6], {n, 0, 60}]
  • Python
    def A073787(n):
        s, q = '', n
        while q >= 6 or q < 0:
            q, r = divmod(q, -6)
            if r < 0:
                q += 1
                r += 6
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016

A073788 Numbers in base -7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 160, 161, 162, 163, 164, 165, 166, 150, 151, 152, 153, 154, 155, 156, 140, 141, 142, 143, 144, 145, 146, 130, 131, 132, 133, 134, 135, 136, 120, 121, 122, 123, 124, 125, 126, 110, 111, 112, 113, 114, 115, 116, 100, 101, 102, 103, 104, 105
Offset: 0

Views

Author

Robert G. Wilson v, Aug 11 2002

Keywords

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Programs

  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits[ Rest[ Reverse[ Mod[ NestWhileList[(#1 - Mod[ #1, b])/-b &, i, #1 != 0 &], b]]]]; Table[ ToNegaBases[n, 7], {n, 0, 60}]
  • Python
    def A073788(n):
        s, q = '', n
        while q >= 7 or q < 0:
            q, r = divmod(q, -7)
            if r < 0:
                q += 1
                r += 7
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 09 2016
Showing 1-10 of 22 results. Next