cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007674 Numbers m such that m and m+1 are squarefree.

Original entry on oeis.org

1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 46, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 129, 130, 133, 137, 138, 141, 142, 145
Offset: 1

Views

Author

Keywords

Comments

m and m+1 squarefree implies that m*(m+1) is a squarefree oblong number and that m*(m+1)/2 is a squarefree triangular number. - Daniel Forgues, Aug 18 2012
Numbers m such that A002378(m) is squarefree. - Thomas Ordowski, Sep 01 2015

References

  • P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    ff = {}; gg = {}; Do[kk = FactorInteger[n]; tak = False; Do[If[kk[[m]][[2]] > 1, tak = True], {m, 1, Length[kk]}]; If[tak == False, jj = FactorInteger[n + 1]; tak1 = False; Do[If[jj[[m]][[2]] > 1, tak1 = True], {m, 1, Length[jj]}]; If[tak1 == False, AppendTo[ff, n]]], {n, 1, 500}]; ff (* Artur Jasinski, Jan 28 2010 *)
    Select[Range[400],SquareFreeQ[#(#+1)]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
  • PARI
    list(lim)=my(v=vectorsmall(lim\1,i,1),u=List()); for(n=2, sqrt(lim), forstep(i=n^2,lim,n^2, v[i]=v[i-1]=0)); for(i=1,lim, if(v[i], listput(u,i))); v=0; Vec(u) \\ Charles R Greathouse IV, Aug 10 2011

Formula

A008966(a(n))*A008966(a(n)+1) = 1. - Reinhard Zumkeller, Dec 03 2009
a(n) ~ k*n, where k = 1/A065474. This result is originally due to Carlitz; for the (current) best error term, see Reuss. - Charles R Greathouse IV, Aug 10 2011, expanded Sep 18 2019

Extensions

Initial 1 added at the suggestion of Zak Seidov, Sep 19 2007