A007674 Numbers m such that m and m+1 are squarefree.
1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 46, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 129, 130, 133, 137, 138, 141, 142, 145
Offset: 1
References
- P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- L. Carlitz, On a problem in additive arithmetic II, Quarterly Journal of Mathematics 3 (1932), pp. 273-290.
- Thomas Reuss, Pairs of k-free numbers, consecutive square-full numbers, arXiv:1212.3150 [math.NT], 2012-2014.
Programs
-
Mathematica
ff = {}; gg = {}; Do[kk = FactorInteger[n]; tak = False; Do[If[kk[[m]][[2]] > 1, tak = True], {m, 1, Length[kk]}]; If[tak == False, jj = FactorInteger[n + 1]; tak1 = False; Do[If[jj[[m]][[2]] > 1, tak1 = True], {m, 1, Length[jj]}]; If[tak1 == False, AppendTo[ff, n]]], {n, 1, 500}]; ff (* Artur Jasinski, Jan 28 2010 *) Select[Range[400],SquareFreeQ[#(#+1)]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
-
PARI
list(lim)=my(v=vectorsmall(lim\1,i,1),u=List()); for(n=2, sqrt(lim), forstep(i=n^2,lim,n^2, v[i]=v[i-1]=0)); for(i=1,lim, if(v[i], listput(u,i))); v=0; Vec(u) \\ Charles R Greathouse IV, Aug 10 2011
Formula
a(n) ~ k*n, where k = 1/A065474. This result is originally due to Carlitz; for the (current) best error term, see Reuss. - Charles R Greathouse IV, Aug 10 2011, expanded Sep 18 2019
Extensions
Initial 1 added at the suggestion of Zak Seidov, Sep 19 2007
Comments