A007675 Numbers m such that m, m+1 and m+2 are squarefree.
1, 5, 13, 21, 29, 33, 37, 41, 57, 65, 69, 77, 85, 93, 101, 105, 109, 113, 129, 137, 141, 157, 165, 177, 181, 185, 193, 201, 209, 213, 217, 221, 229, 237, 253, 257, 265, 281, 285, 301, 309, 317, 321, 329, 345, 353, 357, 365, 381, 389, 393, 397, 401, 409, 417, 429, 433, 437, 445, 453
Offset: 1
Examples
85 is a term as 85 = 17*5, 86 = 43*2, 87 = 29*3.
References
- P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Haskell
a007675 n = a007675_list !! (n-1) a007675_list = f 1 a008966_list where f n (u:xs'@(v:w:x:xs)) | u == 1 && w == 1 && v == 1 = n : f (n+4) xs | otherwise = f (n+1) xs' -- Reinhard Zumkeller, Nov 05 2011
-
Maple
select(t -> andmap(NumberTheory:-IsSquareFree,[t,t+1,t+2]), [seq(i,i=1..1000,4)]); # Robert Israel, Jul 16 2024
-
Mathematica
Select[Range[1000], SquareFreeQ[#(# + 1)(# + 2)] &] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *) Transpose[Select[Partition[Select[Range[400], SquareFreeQ], 3, 1], Differences[#] == {1, 1} &]][[1]] (* Harvey P. Dale, Apr 11 2012 *) Select[Range[1, 499, 2], MoebiusMu[#^3 + 3#^2 + 2#] != 0 &] (* Alonso del Arte, Jan 16 2014 *) SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,500}],{1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 14 2017 *)
-
PARI
is(n)=issquarefree(n)&&issquarefree(n+1)&&issquarefree(n+2) \\ Charles R Greathouse IV, Mar 05 2013
Formula
Numbers m such that g(m)*g(m+1)*g(m+2) = 1, where g(w) = abs(mu(w)). - Labos Elemer
a(n) ~ c*n with c = 7.96895... = 1/A206256. - Charles R Greathouse IV, Mar 05 2013
Comments