A007717 Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.
1, 2, 7, 23, 79, 274, 1003, 3763, 14723, 59663, 250738, 1090608, 4905430, 22777420, 109040012, 537401702, 2723210617, 14170838544, 75639280146, 413692111521, 2316122210804, 13261980807830, 77598959094772, 463626704130058, 2826406013488180, 17569700716557737
Offset: 0
Keywords
Examples
a(2) = 7 (here - denotes an edge, = denotes a pair of parallel edges and o is a loop): oo o o o- o - = -- - - From _Gus Wiseman_, Jul 18 2018: (Start) Non-isomorphic representatives of the a(2) = 7 multiset partitions of {1, 1, 2, 2}: (1122), (1)(122), (11)(22), (12)(12), (1)(1)(22), (1)(2)(12), (1)(1)(2)(2). (End) From _Gus Wiseman_, Jan 08 2024: (Start) Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 rooted loopless multigraphs (root shown as singleton): {{1}} {{1},{1,2}} {{1},{1,2},{1,2}} {{1},{2,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{1,2},{3,4}} {{1},{2,3},{2,3}} {{1},{2,3},{2,4}} {{1},{2,3},{4,5}} (End)
References
- Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Mateo Díaz, Dmitriy Drusvyatskiy, Jack Kendrick, and Rekha R. Thomas, Invariant Kernels: Rank Stabilization and Generalization Across Dimensions, arXiv:2502.01886 [math.OC], 2025. See p. 43.
- Huaien Li and David C. Torney, Enumeration of unlabelled multigraphs, Ars Combin. 75 (2005) 171-188. MR2133219.
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) table 67.
Crossrefs
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m]; Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}]; RowSumMats[n_, m_, k_] := Module[{s=0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!]; a[n_] := RowSumMats[n, 2n, 2]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
-
PARI
\\ See A318951 for RowSumMats a(n)=RowSumMats(n, 2*n, 2); \\ Andrew Howroyd, Sep 06 2018
-
PARI
\\ See A339065 for G. seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020
Extensions
More terms from Vladeta Jovovic, Jan 26 2000
a(0)=1 prepended and a(16)-a(25) added by Max Alekseyev, Jun 21 2011
Comments