cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002738 Coefficients for extrapolation.

Original entry on oeis.org

3, 60, 630, 5040, 34650, 216216, 1261260, 7001280, 37413090, 193993800, 981608628, 4867480800, 23728968900, 114011377200, 540972351000, 2538963567360, 11802213457650, 54396360988200, 248812984520100, 1130341536324000, 5103492036502860, 22913637714910800
Offset: 0

Views

Author

Keywords

Comments

Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n-2 of B equals a(n-3). - T. D. Noe, May 01 2011

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A331431.

Programs

  • Magma
    [3*Binomial(2*n+3,n)*Binomial(n+3,3): n in [0..30]]; // G. C. Greubel, Mar 21 2022
    
  • Mathematica
    Table[Total[Inverse[HilbertMatrix[n]][[n - 2]]], {n, 3, 25}] (* T. D. Noe, May 02 2011 *)
  • Sage
    [3*binomial(2*n+3,3)*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Mar 21 2022

Formula

From Alois P. Heinz, May 02 2011: (Start)
a(n) = 3*binomial(2*n+3,n)*binomial(n+3,n).
G.f.: 3*(1 + 6*x)/(1-4*x)^(7/2). (End)
a(n) = binomial(2*n+3,n)*(n^3 + 6*n^2 + 11*n+6)/2. - Charles R Greathouse IV, May 02 2011
a(n) = 3*A007744(n). - R. J. Mathar, Jan 21 2020
a(n) = (3/2)*( 5*A020918(n) - 3*A002802(n)). - G. C. Greubel, Mar 21 2022

Extensions

Extended by T. D. Noe, May 01 2011

A106440 a(n) = binomial(2n+4,n)*binomial(n+4,4).

Original entry on oeis.org

1, 30, 420, 4200, 34650, 252252, 1681680, 10501920, 62355150, 355655300, 1963217256, 10546208400, 55367594100, 285028443000, 1442592936000, 7193730107520, 35406640372950, 172255143129300, 829376615067000
Offset: 0

Views

Author

Paul Barry, May 02 2005

Keywords

Comments

Fifth column of A104684.
Diagonal of the rational function 1 / (1 - x - y)^5. - Ilya Gutkovskiy, Apr 24 2025

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n+4,n]Binomial[n+4,4],{n,0,20}] (* Harvey P. Dale, May 03 2019 *)

Formula

G.f.: (1+12x+6x^2)/(1-4x)^(9/2).
D-finite with recurrence n^2*a(n) -2*(n+2)*(2*n+3)*a(n-1)=0. - R. J. Mathar, Feb 20 2015
G.f.: 2F1(5/2,3;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A020920(n)+12*A020920(n-1)+6*A020920(n-2). - R. J. Mathar, Aug 09 2015
a(n) = (n+1)*A002803(n). - R. J. Mathar, Aug 09 2015
Showing 1-2 of 2 results.