cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007751 Even bisection of A007750.

Original entry on oeis.org

0, 7, 120, 1921, 30624, 488071, 7778520, 123968257, 1975713600, 31487449351, 501823476024, 7997688167041, 127461187196640, 2031381306979207, 32374639724470680, 515962854284551681, 8223031028828356224
Offset: 0

Views

Author

John C. Hallyburton, Jr. (hallyb(AT)vmsdev.enet.dec.com)

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,7,120];; for n in [4..30] do a[n]:=17*a[n-1]-17*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 10 2020
  • Magma
    I:=[0,7,120]; [n le 3 select I[n] else 17*Self(n-1) -17*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 10 2020
    
  • Maple
    seq(simplify((4*ChebyshevU(n,8) -11*ChebyshevU(n-1,8) -4)/7)), n = 0..30); # G. C. Greubel, Feb 10 2020
  • Mathematica
    Table[(4*ChebyshevU[n,8] -11*ChebyshevU[n-1,8] -4)/7, {n,0,30}] (* G. C. Greubel, Feb 10 2020 *)
    LinearRecurrence[{17,-17,1},{0,7,120},20] (* Harvey P. Dale, Dec 01 2022 *)
  • PARI
    a(n)=local(w); w=8+3*quadgen(28); imag(w^n)+4*(real(w^n)-1)/7
    
  • PARI
    vector(31, n, my(m=n-1); (4*polchebyshev(m,2,8) -11*polchebyshev(m-1,2,8) -4)/7 ) \\ G. C. Greubel, Feb 10 2020
    
  • Sage
    [(4*chebyshev_U(n,8) -11*chebyshev_U(n-1,8) -4)/7 for n in (0..30)] # G. C. Greubel, Feb 10 2020
    

Formula

G.f.: x*(7 + x)/((1-x)*(1-16*x+x^2)).
a(n) = 16*a(n-1) - a(n-2) + 8.
a(n) = (4*ChebyshevU(n,8) - 11*ChebyshevU(n-1,8) -4)/7. - G. C. Greubel, Feb 10 2020
E.g.f.: (cosh(x) + sinh(x))*(-4 + (cosh(7*x) + sinh(7*x))*(4*cosh(3*sqrt(7)*x) + sqrt(7)*sinh(3*sqrt(7)*x)))/7. - Stefano Spezia, Feb 20 2020

Extensions

Edited by Michael Somos, Jul 27 2002