A007774 Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.
6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118
Offset: 1
Keywords
Examples
20 is a term because 20 = 2^2*5 with two distinct prime divisors 2, 5.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- W. Burnside, On groups of order p^alpha q^beta, Proc. London Math. Soc. (2) 1 (1904), 388-392.
- Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
Crossrefs
Row 2 of A125666.
Cf. A001358 (products of two primes), A014612 (products of three primes), A014613 (products of four primes), A014614 (products of five primes), where the primes are not necessarily distinct.
Programs
-
Haskell
a007774 n = a007774_list !! (n-1) a007774_list = filter ((== 2) . a001221) [1..] -- Reinhard Zumkeller, Aug 02 2012
-
Maple
with(numtheory,factorset):f := proc(n) if nops(factorset(n))=2 then RETURN(n) fi; end;
-
Mathematica
Select[Range[0,6! ],Length[FactorInteger[ # ]]==2&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *) Select[Range[120],PrimeNu[#]==2&] (* Harvey P. Dale, Jun 03 2020 *)
-
PARI
is(n)=omega(n)==2 \\ Charles R Greathouse IV, Apr 01 2013
-
Python
from sympy import primefactors A007774_list = [n for n in range(1,10**5) if len(primefactors(n)) == 2] # Chai Wah Wu, Aug 23 2021
Extensions
Expanded definition. - N. J. A. Sloane, Aug 22 2021
Comments