cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 65 results. Next

A346620 Partial sums of A007774.

Original entry on oeis.org

6, 16, 28, 42, 57, 75, 95, 116, 138, 162, 188, 216, 249, 283, 318, 354, 392, 431, 471, 515, 560, 606, 654, 704, 755, 807, 861, 916, 972, 1029, 1087, 1149, 1212, 1277, 1345, 1414, 1486, 1560, 1635, 1711, 1788, 1868, 1950, 2035, 2121, 2208, 2296, 2387, 2479, 2572, 2666, 2761, 2857, 2955, 3054, 3154
Offset: 1

Views

Author

N. J. A. Sloane, Aug 22 2021

Keywords

Crossrefs

A046387 Products of exactly 5 distinct primes.

Original entry on oeis.org

2310, 2730, 3570, 3990, 4290, 4830, 5610, 6006, 6090, 6270, 6510, 6630, 7410, 7590, 7770, 7854, 8610, 8778, 8970, 9030, 9282, 9570, 9690, 9870, 10010, 10230, 10374, 10626, 11130, 11310, 11730, 12090, 12210, 12390, 12558, 12810, 13090, 13110
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

Subsequence of A051270. 4620 = 2^2*3*5*7*11 is in A051270 but not in here, for example. - R. J. Mathar, Nov 10 2014

Examples

			a(1) = 2310 = 2 * 3 * 5 * 7 * 11 = A002110(5) = 5#.
a(2) = 2730 = 2 * 3 * 5 * 7 * 13.
a(3) = 3570 = 2 * 3 * 5 * 7 * 17.
a(10) = 6006 = 2 * 3 * 7 * 11 * 13.
		

Crossrefs

Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.

Programs

  • Maple
    A046387 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2*3*5*7*11 ;
        else
            for a from procname(n-1)+1 do
                if A001221(a)= 5 and issqrfree(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Oct 13 2019
  • Mathematica
    f5Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1}; lst={};Do[If[f5Q[n], AppendTo[lst, n]], {n, 8!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
  • PARI
    is(n)=factor(n)[,2]==[1,1,1,1,1]~ \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    is(n)= omega(n)==5 && bigomega(n)==5 \\ Hugo Pfoertner, Dec 18 2018
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A046387(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,5)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Aug 30 2024

Extensions

Entry revised by N. J. A. Sloane, Apr 10 2006

A078840 Table of n-almost-primes T(n,k) (n >= 0, k > 0), read by antidiagonals, starting at T(0,1)=1 followed by T(1,1)=2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 12, 16, 11, 10, 18, 24, 32, 13, 14, 20, 36, 48, 64, 17, 15, 27, 40, 72, 96, 128, 19, 21, 28, 54, 80, 144, 192, 256, 23, 22, 30, 56, 108, 160, 288, 384, 512, 29, 25, 42, 60, 112, 216, 320, 576, 768, 1024, 31, 26, 44, 81, 120, 224, 432, 640, 1152
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

An n-almost-prime is a positive integer that has exactly n prime factors.
This sequence is a rearrangement of the natural numbers. - Robert G. Wilson v, Feb 11 2006
Each antidiagonal begins with the n-th prime and ends with 2^n.
From Eric Desbiaux, Jun 27 2009: (Start)
(A001222 gives this sequence)
A001221 gives another table:
1
- 2 3 4 5 7 8 9 11 ... A000961
- 6 10 12 14 15 18 20 21 ... A007774
- 30 42 60 66 70 78 84 90 ... A033992
- 210 330 390 420 462 510 546 570 ... A033993
- 2310 2730 3570 3990 4290 4620 4830 5460 ... A051270
Antidiagonals begin with A000961 and end with A002110.
Diagonal is A073329 which is last term in n-th row of A048692. (End)

Examples

			Table begins:
  1
  -  2  3   5   7  11  13  17  19  23  29 ...
  -  4  6   9  10  14  15  21  22  25  26 ...
  -  8 12  18  20  27  28  30  42  44  45 ...
  - 16 24  36  40  54  56  60  81  84  88 ...
  - 32 48  72  80 108 112 120 162 168 176 ...
  - 64 96 144 160 216 224 240 324 336 352 ...
		

Crossrefs

T(1, k)=A000040(k), T(2, k)=A001358(k), T(3, k)=A014612(k), T(4, k)=A014613(k), T(5, k)=A014614(k), T(6, k)=A046306(k), T(7, k)=A046308(k), T(8, k)=A046310(k), T(9, k)=A046312(k), T(10, k)=A046314(k).
T(11, k)=A069272(k), T(12, k)=A069273(k), T(13, k)=A069274(k), T(14, k)=A069275(k), T(15, k)=A069276(k), T(16, k)=A069277(k), T(17, k)=A069278(k), T(18, k)=A069279(k), T(19, k)=A069280(k), T(20, k)=A069281(k).
T(k, 1)=A000079(k), T(k, 2)=A007283(k), T(k, 3)=A116453(k), T(k, k)=A101695(k), T(k, k+1)=A078841(k).
A091538 is this sequence with zeros inserted, making a square array.

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ AlmostPrime[k, n - k + 1], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v *)
    mx = 11; arr = NestList[Take[Union@Flatten@Outer[Times, #, primes], mx] &, primes = Prime@Range@mx, mx]; Prepend[Flatten@Table[arr[[k, n - k + 1]], {n, mx}, {k, n}], 1] (* Ivan Neretin, Apr 30 2016 *)
    (* The next code skips the initial 1. *)
    width = 15; (seq = Table[
      Rest[NestList[1 + NestWhile[# + 1 &, #, ! PrimeOmega[#] == z &] &,
      2^z, width - z + 1]] - 1, {z, width}]) // TableForm
    Flatten[Map[Reverse[Diagonal[Reverse[seq], -width + #]] &, Range[width]]]
    (* Peter J. C. Moses, Jun 05 2019 *)
    Grid[Table[Select[Range[200], PrimeOmega[#] == n &], {n, 0, 7}]]
    (* Clark Kimberling, Nov 17 2024 *)
  • PARI
    T(n,k)=if(k<0,0,s=1; while(sum(i=1,s,if(bigomega(i)-n,0,1))
    				
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi, prime
    def A078840_T(n,k):
        if n == 1: return prime(k)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(k-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

Edited by Robert G. Wilson v, Feb 11 2006

A000977 Numbers that are divisible by at least three different primes.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285
Offset: 1

Views

Author

Keywords

Comments

a(n+1)-a(n) seems bounded and sequence appears to give n such that the number of integers of the form nk/(n+k) k>=1 is not equal to Sum_{ d | n} omega(d) (i.e., n such that A062799(n) is not equal to A063647(n)). - Benoit Cloitre, Aug 27 2002
The first differences are bounded: clearly a(n+1) - a(n) <= 30. - Charles R Greathouse IV, Dec 19 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A070915.

Programs

  • Haskell
    a000977 n = a000977_list !! (n-1)
    a000977_list = filter ((> 2) . a001221) [1..]
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    A000977 := proc(n)
    if (nops(numtheory[factorset](n)) >= 3) then
       RETURN(n)
    fi: end:  seq(A000977(n), n=1..500); # Jani Melik, Feb 24 2011
  • Mathematica
    DeleteCases[Table[If[Count[PrimeQ[Divisors[i]], True] >= 3, i, 0], {i, 1, 274}], 0]
    Select[Range[300], PrimeNu[#] >= 3 &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    is(n)=omega(n)>2 \\ Charles R Greathouse IV, Dec 19 2011
    

Formula

a(n) = n + O(n log log n / log n). - Charles R Greathouse IV, Dec 19 2011 A001221(a(n)) > 2. - Reinhard Zumkeller, May 03 2013
A033992 UNION A033993 UNION A051270 UNION A074969 UNION A176655 UNION ... - R. J. Mathar, Dec 05 2016

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 17 2002

A030231 Numbers with an even number of distinct prime factors.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Keywords

Comments

Gcd(A008472(a(n)), A007947(a(n)))=1; see A014963. - Labos Elemer, Mar 26 2003
Superset of A007774. - R. J. Mathar, Oct 23 2008
A076479(a(n)) = +1. - Reinhard Zumkeller, Jun 01 2013
Union of the rows of A125666 with even indices. - R. J. Mathar, Jul 19 2023

Crossrefs

Programs

  • Haskell
    a030231 n = a030231_list !! (n-1)
    a030231_list = filter (even . a001221) [1..]
    -- Reinhard Zumkeller, Mar 26 2013
  • Mathematica
    Select[Range[200],EvenQ[PrimeNu[#]]&] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    j=[]; for(n=1,200,x=omega(n); if(Mod(x,2)==0,j=concat(j,n))); j
    
  • PARI
    is(n)=omega(n)%2==0 \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

From Benoit Cloitre, Dec 08 2002: (Start)
k such that Sum_{d|k} mu(d)*A000005(d) = (-1)^omega(k) = +1 where mu(d)=A008683(d), and omega(d)=A001221(d).
k such that A023900(k) > 0. (End)
Union of A007774, A033993, A074969,... - R. J. Mathar, Jul 22 2025

Extensions

Corrected by Dan Pritikin (pritikd(AT)muohio.edu), May 29 2002

A256617 Numbers having exactly two distinct prime factors, which are also adjacent prime numbers.

Original entry on oeis.org

6, 12, 15, 18, 24, 35, 36, 45, 48, 54, 72, 75, 77, 96, 108, 135, 143, 144, 162, 175, 192, 216, 221, 225, 245, 288, 323, 324, 375, 384, 405, 432, 437, 486, 539, 576, 648, 667, 675, 768, 847, 864, 875, 899, 972, 1125, 1147, 1152, 1215, 1225, 1296, 1458, 1517, 1536, 1573, 1715, 1728, 1763, 1859, 1875, 1944
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 05 2015

Keywords

Examples

			.   n | a(n)                      n | a(n)
. ----+------------------       ----+------------------
.   1 |   6 = 2 * 3              13 |  77 = 7 * 11
.   2 |  12 = 2^2 * 3            14 |  96 = 2^5 * 3
.   3 |  15 = 3 * 5              15 | 108 = 2^2 * 3^3
.   4 |  18 = 2 * 3^2            16 | 135 = 3^3 * 5
.   5 |  24 = 2^3 * 3            17 | 143 = 11 * 13
.   6 |  35 = 5 * 7              18 | 144 = 2^4 * 3^2
.   7 |  36 = 2^2 * 3^2          19 | 162 = 2 * 3^4
.   8 |  45 = 3^2 * 5            20 | 175 = 5^2 * 7
.   9 |  48 = 2^4 * 3            21 | 192 = 2^6 * 3
.  10 |  54 = 2 * 3^3            22 | 216 = 2^3 * 3^3
.  11 |  72 = 2^3 * 3^2          23 | 221 = 13 * 17
.  12 |  75 = 3 * 5^2            24 | 225 = 3^2 * 5^2 .
		

Crossrefs

Subsequence of A007774.
Subsequences: A006094, A033845, A033849, A033851.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a256617 n = a256617_list !! (n-1)
    a256617_list = f (singleton (6, 2, 3)) $ tail a000040_list where
       f s ps@(p : ps'@(p':_))
         | m < p * p' = m : f (insert (m * q, q, q')
                              (insert (m * q', q, q') s')) ps
         | otherwise  = f (insert (p * p', p, p') s) ps'
         where ((m, q, q'), s') = deleteFindMin s
    
  • Mathematica
    Select[Range[2000], MatchQ[FactorInteger[#], {{p_, }, {q, }} /; q == NextPrime[p]]&] (* _Jean-François Alcover, Dec 31 2017 *)
  • PARI
    is(n) = if(omega(n)!=2, return(0), my(f=factor(n)[, 1]~); if(f[2]==nextprime(f[1]+1), return(1))); 0 \\ Felix Fröhlich, Dec 31 2017
    
  • PARI
    list(lim)=my(v=List(),c=sqrtnint(lim\=1,3),d=nextprime(c+1),p=2); forprime(q=3,d, for(i=1,logint(lim\q,p), my(t=p^i); while((t*=q)<=lim, listput(v,t))); p=q); forprime(q=d+1,lim\precprime(sqrtint(lim)), listput(v,p*q); p=q); Set(v) \\ Charles R Greathouse IV, Apr 12 2020
    
  • Python
    from sympy import primefactors, nextprime
    A256617_list = []
    for n in range(1,10**5):
        plist = primefactors(n)
        if len(plist) == 2 and plist[1] == nextprime(plist[0]):
            A256617_list.append(n) # Chai Wah Wu, Aug 23 2021

Formula

A001222(a(n)) = 2.
A006530(a(n)) = A151800(A020639(n)) = A000040(A049084(A020639(a(n)))+1).
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/A083553(n) = Sum_{n>=1} 1/((prime(n)-1)*(prime(n+1)-1)) = 0.7126073495... - Amiram Eldar, Dec 23 2020

A125666 Table read by ascending antidiagonals: n-th row of table consists of the positive integers divisible by exactly n distinct primes.

Original entry on oeis.org

2, 6, 3, 30, 10, 4, 210, 42, 12, 5, 2310, 330, 60, 14, 7, 30030, 2730, 390, 66, 15, 8, 510510, 39270, 3570, 420, 70, 18, 9, 9699690, 570570, 43890, 3990, 462, 78, 20, 11, 223092870, 11741730, 690690, 46410, 4290, 510, 84, 21, 13, 6469693230, 281291010
Offset: 1

Views

Author

Leroy Quet, Jan 29 2007

Keywords

Comments

Concatenated sequence is a permutation of the integers >= 2.
The chosen encoding of the table by *rising* antidiagonals is contrary to the OEIS standard which rather expects falling antidiagonals: as a consequence, displaying this sequence as a table (2nd link after the list of terms above) will list the integers with given number of prime divisors in columns rather than rows. - M. F. Hasler, Jun 06 2024

Examples

			The table begins:
  n\k|     1     2    3    4    5    6  ...
  ---+-------------------------------------
   1 |     2,    3,   4,   5,   7,   8, ...
   2 |     6,   10,  12,  14,  15, ...
   3 |    30,   42,  60,  66, ...
   4 |   210,  330, 390, ...
   5 |  2310, 2730, ...
   6 | 30030,  ...
  ...|   ...
		

Crossrefs

Cf. A001221, A002110 (col 1), A246655 (row 1), A007774 (row 2), A033992 (row 3), A033993 (row 4), A051270 (row 5), A074969 (row 6), A176655 (row 7), A348072 (row 8), A348073 (row 9), A073329 (diag), compare to A048692.

Programs

  • Mathematica
    f[n_, m_] := f[n, m] = Block[{c = m, k = If[m == 1, Product[Prime[i], {i, n}], f[n, m - 1] + 1]},While[Length@FactorInteger[k] != n, k++ ];k];Table[f[d - m + 1, m], {d, 10}, {m, d}] // Flatten (* Ray Chandler, Feb 08 2007 *)
  • PARI
    A125666(n, k=0)={if(k, for(m=vecprod(primes(n)), oo, omega(m)!=n || k-- || return(m)), A125666(A004736(n), A002260(n)))} \\ M. F. Hasler, Jun 06 2024

Extensions

Extended by Ray Chandler, Feb 08 2007

A179646 Product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2).

Original entry on oeis.org

288, 800, 972, 1568, 3872, 5408, 6075, 9248, 11552, 11907, 12500, 16928, 26912, 28125, 29403, 30752, 41067, 43808, 53792, 59168, 67228, 70227, 70688, 87723, 89888, 111392, 119072, 128547, 143648, 151263, 153125, 161312, 170528, 199712
Offset: 1

Views

Author

Keywords

Comments

288=2^5*3^2, 800=2^5*5^2,..

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,5}; Select[Range[200000], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\4)^(1/5),t=p^5;forprime(q=2,sqrt(lim\t),if(p==q,next);listput(v,t*q^2)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A189988(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(5) - P(7) = A085548 * A085965 - A085967 = 0.007886..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A179666 Products of the 4th power of a prime and a distinct prime of power 3 (p^4*q^3).

Original entry on oeis.org

432, 648, 2000, 5000, 5488, 10125, 16875, 19208, 21296, 27783, 35152, 64827, 78608, 107811, 109744, 117128, 177957, 194672, 214375, 228488, 300125, 390224, 395307, 397953, 476656, 555579, 668168, 771147, 810448, 831875
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={3,4}; Select[Range[10^6], f]
    With[{nn=40},Select[Flatten[{#[[1]]^4 #[[2]]^3,#[[1]]^3 #[[2]]^4}&/@ Subsets[ Prime[Range[nn]],{2}]]//Union,#<=16nn^3&]] (* Harvey P. Dale, Nov 15 2020 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\8)^(1/4),t=p^4;forprime(q=2,(lim\t)^(1/3),if(p==q,next);listput(v,t*q^3)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A179666(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x//p**4,3)[0]) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,7)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Formula

Sum_{n>=1} 1/a(n) = P(3)*P(4) - P(7) = A085541 * A085964 - A085967 = 0.005171..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A074816 a(n) = 3^A001221(n) = 3^omega(n).

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 3, 3, 9, 3, 9, 3, 9, 9, 3, 3, 9, 3, 9, 9, 9, 3, 9, 3, 9, 3, 9, 3, 27, 3, 3, 9, 9, 9, 9, 3, 9, 9, 9, 3, 27, 3, 9, 9, 9, 3, 9, 3, 9, 9, 9, 3, 9, 9, 9, 9, 9, 3, 27, 3, 9, 9, 3, 9, 27, 3, 9, 9, 27, 3, 9, 3, 9, 9, 9, 9, 27, 3, 9, 3, 9, 3, 27, 9, 9, 9, 9, 3, 27, 9, 9, 9, 9, 9, 9, 3, 9, 9, 9
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Comments

Old name was: a(n) = sum(d|n, tau(d)*mu(d)^2 ).
Terms are powers of 3.
The inverse Mobius transform of A074823, as the Dirichlet g.f. is product_{primes p} (1+2*p^(-s)) and the Dirichlet g.f. of A074816 is product_{primes p} (1+2*p^(-s))/(1-p^(-s)). - R. J. Mathar, Feb 09 2011
If n is squarefree, then a(n) = #{(x, y) : x, y positive integers, lcm (x, y) = n}. See Crandall & Pomerance. - Michel Marcus, Mar 23 2016

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.3 p. 108.

Crossrefs

Programs

Formula

a(n) = 3^m if n is divisible by m distinct primes. i.e., a(n)=3 if n is in A000961; a(n)=9 if n is in A007774 ...
a(n) = 3^A001221(n) = 3^omega(n). Multiplicative with a(p^e)=3. - Vladeta Jovovic, Sep 09 2002.
a(n) = tau_3(rad(n)) = A007425(A007947(n)). - Enrique Pérez Herrero, Jun 24 2010
a(n) = abs(Sum_{d|n} A000005(d^3)*mu(d)). - Enrique Pérez Herrero, Jun 28 2010
a(n) = Sum_{d|n, gcd(d, n/d) = 1} 2^omega(d) (The total number of unitary divisors of the unitary divisors of n). - Amiram Eldar, May 29 2020, Dec 27 2024
a(n) = Sum_{d1|n, d2|n} mu(d1*d2)^2. - Wesley Ivan Hurt, Feb 04 2022
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Feb 16 2022

Extensions

Simpler definition at the suggestion of Michel Marcus. - N. J. A. Sloane, Mar 25 2016
Showing 1-10 of 65 results. Next