cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A006094 Products of 2 successive primes.

Original entry on oeis.org

6, 15, 35, 77, 143, 221, 323, 437, 667, 899, 1147, 1517, 1763, 2021, 2491, 3127, 3599, 4087, 4757, 5183, 5767, 6557, 7387, 8633, 9797, 10403, 11021, 11663, 12317, 14351, 16637, 17947, 19043, 20711, 22499, 23707, 25591, 27221, 28891, 30967, 32399, 34571, 36863
Offset: 1

Views

Author

Keywords

Comments

The Huntley reference would suggest prefixing the sequence with an initial 4 - Enoch Haga. [But that would conflict with the definition! - N. J. A. Sloane, Oct 13 2009]
Sequence appears to coincide with the sequence of numbers n such that the largest prime < sqrt(n) and the smallest prime > sqrt(n) divide n. - Benoit Cloitre, Apr 04 2002
This is true: p(n) < [ sqrt(a(n)) = sqrt(p(n)*p(n+1)) ] < p(n+1) by definition. - Jon Perry, Oct 02 2013
a(n+1) = smallest number such that gcd(a(n), a(n+1)) = prime(n+1). - Alexandre Wajnberg and Ray Chandler, Oct 14 2005
Also the area of rectangles whose side lengths are consecutive primes. E.g., the consecutive primes 7,11 produce a 7 X 11 unit rectangle which has area 77 square units. - Cino Hilliard, Jul 28 2006
a(n) = A001358(A172348(n)); A046301(n) = lcm(a(n), a(n+1)); A065091(n) = gcd(a(n), a(n+1)); A066116(n+2) = a(n+1)*a(n); A109805(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 13 2011
See A209329 for the sum of the reciprocals. - M. F. Hasler, Jan 22 2013
A078898(a(n)) = 3. - Reinhard Zumkeller, Apr 06 2015

References

  • H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subset of the squarefree semiprimes, A006881.
Subsequence of A256617 and A097889.

Programs

  • Haskell
    a006094 n = a006094_list !! (n-1)
    a006094_list = zipWith (*) a000040_list a065091_list
    -- Reinhard Zumkeller, Mar 13 2011
    
  • Haskell
    a006094_list = pr a000040_list
      where pr (n:m:tail) = n*m : pr (m:tail)
            pr _ = []
    -- Jean-François Antoniotti, Jan 08 2020
    
  • Magma
    [NthPrime(n)*NthPrime(n+1): n in [1..41]]; // Bruno Berselli, Feb 24 2011
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(ithprime):
    seq(a(n), n=1..43);  # Alois P. Heinz, Jan 02 2021
  • Mathematica
    Table[ Prime[n] Prime[n + 1], {n, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
    Times@@@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Oct 15 2011 *)
  • MuPAD
    ithprime(i)*ithprime(i+1) $ i = 1..41 // Zerinvary Lajos, Feb 26 2007
    
  • PARI
    g(n) = for(x=1,n,print1(prime(x)*prime(x+1)",")) \\ Cino Hilliard, Jul 28 2006
    
  • PARI
    is(n)=my(p=precprime(sqrtint(n))); p>1 && n%p==0 && isprime(n/p) && nextprime(p+1)==n/p \\ Charles R Greathouse IV, Jun 04 2014
    
  • Python
    from sympy import prime, primerange
    def aupton(nn):
        alst, prevp = [], 2
        for p in primerange(3, prime(nn+1)+1): alst.append(prevp*p); prevp = p
        return alst
    print(aupton(43)) # Michael S. Branicky, Jun 15 2021
    
  • Python
    from sympy import prime, nextprime
    def A006094(n): return (p:=prime(n))*nextprime(p) # Chai Wah Wu, Oct 18 2024

Formula

A209329 = Sum_{n>=2} 1/a(n). - M. F. Hasler, Jan 22 2013
a(n) = A000040(n) * A000040(n+1). - Alois P. Heinz, Jan 02 2021

A033845 Numbers k of the form 2^i*3^j, where i and j >= 1.

Original entry on oeis.org

6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664
Offset: 1

Views

Author

Keywords

Comments

This sequence is easily confused with A003586, which gives numbers of the form 2^i*3^j with i, j >= 0, and is one-sixth of the present sequence. . Don't simply say "numbers of the form 2^i*3^j", but specify which sequence you mean. - N. J. A. Sloane, May 26 2024
Solutions to phi(n)=n/3 [See J-M. de Koninck & A. Mercier, problème 733].
Numbers n such that Sum_{d prime divisor of n} 1/d = 5/6. - Benoit Cloitre, Apr 13 2002
Also n such that Sum_{d|n} mu(d)^2/d = 2. - Benoit Cloitre, Apr 15 2002
Complement of A006899 with respect to A003586. - Reinhard Zumkeller, Sep 25 2008
In the sieve of Eratosthenes, if one crosses numbers off multiple times, these numbers are crossed off twice, first for 2 and then for 3. - Alonso del Arte, Aug 22 2011
Subsequence of A051037. - Reinhard Zumkeller, Sep 13 2011
Numbers n such that Sum_{d|n} A008683(d)*A000041(d) = 7. - Carl Najafi, Oct 19 2011
Numbers n such that Sum_{d|n} A008683(d)*A000700(d) = 2. - Carl Najafi, Oct 20 2011
Solutions to the equation A001615(x) = 2x. - Enrique Pérez Herrero, Jan 02 2012
So these numbers are called Psi-perfect numbers [see J-M. de Koninck & A. Mercier, problème 654]. - Bernard Schott, Nov 20 2020

References

  • J-M. de Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, 2004, Problème 733, page 94.
  • J-M. de Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, 2004, Problème 654, page 85.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033845 n = a033845_list !! (n-1)
    a033845_list = f (singleton (2*3)) where
       f s = m : f (insert (2*m) $ insert (3*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Mathematica
    mx = 12000; Sort@ Flatten@ Table[2^i*3^j, {i, Log[2, mx]}, {j, Log[3, mx/2^i]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, log(lim\2)\log(3), N=6*3^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 02 2012
    
  • Python
    from sympy import integer_log
    def A033845(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
        return 6*bisection(f,n,n) # Chai Wah Wu, Sep 15 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A033845gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield 6*v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A033845gen(), 50))) # Michael S. Branicky, Sep 18 2024

Formula

Six times the 3-smooth numbers (A003586). - Ralf Stephan, Apr 16 2004
A086411(a(n)) - A086410(a(n)) = 1. - Reinhard Zumkeller, Sep 25 2008
A143201(a(n)) = 2. - Reinhard Zumkeller, Sep 13 2011
a(n) = 2^A191475(n) * 3^A191476(n). - Zak Seidov, Nov 01 2013
Sum_{n>=1} 1/a(n) = 1/2. - Amiram Eldar, Oct 13 2020

Extensions

Edited by N. J. A. Sloane, Jan 31 2010 and May 26 2024.

A007774 Numbers that are divisible by exactly 2 different primes; numbers n with omega(n) = A001221(n) = 2.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118
Offset: 1

Views

Author

Luke Pebody (ltp1000(AT)hermes.cam.ac.uk)

Keywords

Comments

Every group of order p^a * q^b is solvable (Burnside, 1904). - Franz Vrabec, Sep 14 2008
Characteristic function for a(n): floor(omega(n)/2) * floor(2/omega(n)) where omega(n) is the number of distinct prime factors of n. - Wesley Ivan Hurt, Jan 10 2013

Examples

			20 is a term because 20 = 2^2*5 with two distinct prime divisors 2, 5.
		

Crossrefs

Subsequence of A085736; A256617 is a subsequence.
Row 2 of A125666.
Cf. A001358 (products of two primes), A014612 (products of three primes), A014613 (products of four primes), A014614 (products of five primes), where the primes are not necessarily distinct.
Cf. A006881, A046386, A046387, A067885 (product of exactly 2, 4, 5, 6 distinct primes respectively).

Programs

  • Haskell
    a007774 n = a007774_list !! (n-1)
    a007774_list = filter ((== 2) . a001221) [1..]
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Maple
    with(numtheory,factorset):f := proc(n) if nops(factorset(n))=2 then RETURN(n) fi; end;
  • Mathematica
    Select[Range[0,6! ],Length[FactorInteger[ # ]]==2&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
    Select[Range[120],PrimeNu[#]==2&] (* Harvey P. Dale, Jun 03 2020 *)
  • PARI
    is(n)=omega(n)==2 \\ Charles R Greathouse IV, Apr 01 2013
    
  • Python
    from sympy import primefactors
    A007774_list = [n for n in range(1,10**5) if len(primefactors(n)) == 2] # Chai Wah Wu, Aug 23 2021

Extensions

Expanded definition. - N. J. A. Sloane, Aug 22 2021

A324522 Numbers > 1 where the minimum prime index is equal to the number of prime factors counted with multiplicity.

Original entry on oeis.org

2, 9, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 125, 129, 141, 159, 175, 177, 183, 201, 213, 219, 237, 245, 249, 267, 275, 291, 303, 309, 321, 325, 327, 339, 381, 385, 393, 411, 417, 425, 447, 453, 455, 471, 475, 489, 501, 519, 537, 543, 573, 575, 579, 591
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions where the minimum part is equal to the number of parts (A006141). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    2: {1}
    9: {2,2}
   15: {2,3}
   21: {2,4}
   33: {2,5}
   39: {2,6}
   51: {2,7}
   57: {2,8}
   69: {2,9}
   87: {2,10}
   93: {2,11}
  111: {2,12}
  123: {2,13}
  125: {3,3,3}
  129: {2,14}
  141: {2,15}
  159: {2,16}
  175: {3,3,4}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(pi(min(factorset(n)))=bigomega(n)):
    select(q, [$2..600])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[1,1]]]==PrimeOmega[#]&]

Formula

A055396(a(n)) = A001222(a(n)).

A324521 Numbers > 1 where the maximum prime index is less than or equal to the number of prime factors counted with multiplicity.

Original entry on oeis.org

2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 126, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 189, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions with nonnegative rank (A064174). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  27: {2,2,2}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  40: {1,1,1,3}
  45: {2,2,3}
  48: {1,1,1,1,2}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(pi(max(factorset(n)))<=bigomega(n)):
    select(q, [$2..300])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]<=PrimeOmega[#]&]
  • PARI
    isok(m) = (m>1) && (primepi(vecmax(factor(m)[, 1])) <= bigomega(m)); \\ Michel Marcus, Nov 14 2022
    
  • Python
    from sympy import factorint, primepi
    def ok(n):
        f = factorint(n)
        return primepi(max(f)) <= sum(f.values())
    print([k for k in range(2, 257) if ok(k)]) # Michael S. Branicky, Nov 15 2022

Formula

A061395(a(n)) <= A001222(a(n)).

A033849 Numbers whose prime factors are 3 and 5.

Original entry on oeis.org

15, 45, 75, 135, 225, 375, 405, 675, 1125, 1215, 1875, 2025, 3375, 3645, 5625, 6075, 9375, 10125, 10935, 16875, 18225, 28125, 30375, 32805, 46875, 50625, 54675, 84375, 91125, 98415, 140625, 151875, 164025, 234375, 253125, 273375, 295245
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k) = (8/15)*k. - Benoit Cloitre, Apr 19 2002
Subsequence of A143202. - Reinhard Zumkeller, Sep 13 2011

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033849 n = a033849_list !! (n-1)
    a033849_list = f (singleton (3*5)) where
       f s = m : f (insert (3*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Mathematica
    Sort[Flatten[Table[Table[3^j*5^k, {j, 1, 10}], {k, 1, 10}]]] (* Geoffrey Critzer, Dec 07 2014 *)
    Select[Range[300000],FactorInteger[#][[All,1]]=={3,5}&] (* Harvey P. Dale, Oct 19 2022 *)
  • Python
    from sympy import integer_log
    def A033849(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1))
        return 15*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

From Reinhard Zumkeller, Sep 13 2011: (Start)
A143201(a(n)) = 3.
a(n) = 15*A003593(n). (End)
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Dec 22 2020

Extensions

Offset and typo in data fixed by Reinhard Zumkeller, Sep 13 2011

A324517 Numbers > 1 where the maximum prime index equals the number of prime factors minus the number of distinct prime factors.

Original entry on oeis.org

4, 24, 27, 36, 54, 80, 200, 224, 240, 360, 405, 500, 540, 600, 625, 672, 675, 704, 784, 810, 900, 1008, 1120, 1125, 1250, 1350, 1500, 1512, 1664, 1701, 1875, 2112, 2250, 2268, 2352, 2744, 2800, 3168, 3360, 3402, 3520, 3528, 3750, 3872, 3920, 3969, 4352, 4752
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions enumerated by A324518. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
   24: {1,1,1,2}
   27: {2,2,2}
   36: {1,1,2,2}
   54: {1,2,2,2}
   80: {1,1,1,1,3}
  200: {1,1,1,3,3}
  224: {1,1,1,1,1,4}
  240: {1,1,1,1,2,3}
  360: {1,1,1,2,2,3}
  405: {2,2,2,2,3}
  500: {1,1,3,3,3}
  540: {1,1,2,2,2,3}
  600: {1,1,1,2,3,3}
  625: {3,3,3,3}
  672: {1,1,1,1,1,2,4}
  675: {2,2,2,3,3}
  704: {1,1,1,1,1,1,5}
  784: {1,1,1,1,4,4}
  810: {1,2,2,2,2,3}
  900: {1,1,2,2,3,3}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],With[{f=FactorInteger[#]},PrimePi[f[[-1,1]]]==Total[Last/@f]-Length[f]]&]

Formula

A061395(a(n)) = A001222(a(n)) - A001221(a(n)) = A046660(a(n)).

A033851 Numbers whose prime factors are 5 and 7.

Original entry on oeis.org

35, 175, 245, 875, 1225, 1715, 4375, 6125, 8575, 12005, 21875, 30625, 42875, 60025, 84035, 109375, 153125, 214375, 300125, 420175, 546875, 588245, 765625, 1071875, 1500625, 2100875, 2734375, 2941225, 3828125, 4117715, 5359375, 7503125
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k)/k == 24/35. - Artur Jasinski, Nov 09 2008
Subsequence of A143202. - Reinhard Zumkeller, Sep 13 2011

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033851 n = a033851_list !! (n-1)
    a033851_list = f (singleton (5*7)) where
       f s = m : f (insert (5*m) $ insert (7*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 24/35, AppendTo[a, x]], {x, 1, 10000}]; a (* Artur Jasinski, Nov 09 2008 *)
    Take[With[{nn=10},Sort[Flatten[Table[5^i 7^j,{i,nn},{j,nn}]]]],40] (* Harvey P. Dale, Feb 09 2013 *)

Formula

a(n) = 35*A003595(n). - Artur Jasinski, Nov 09 2008
A143201(a(n)) = 3. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/24. - Amiram Eldar, Dec 22 2020

Extensions

Offset fixed by Reinhard Zumkeller, Sep 13 2011

A325196 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

3, 4, 9, 10, 12, 15, 18, 20, 42, 45, 50, 60, 63, 70, 75, 84, 90, 100, 105, 126, 140, 150, 294, 315, 330, 350, 420, 441, 462, 490, 495, 525, 550, 588, 630, 660, 693, 700, 735, 770, 825, 882, 924, 980, 990, 1050, 1100, 1155, 1386, 1470, 1540, 1650, 2730, 3234
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325191.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==1&]

A325191 Number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 1.

Original entry on oeis.org

0, 0, 2, 0, 3, 3, 0, 4, 6, 4, 0, 5, 10, 10, 5, 0, 6, 15, 20, 15, 6, 0, 7, 21, 35, 35, 21, 7, 0, 8, 28, 56, 70, 56, 28, 8, 0, 9, 36, 84, 126, 126, 84, 36, 9, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 0, 11, 55, 165, 330, 462
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325196.
Under the Bulgarian solitaire step, these partitions form cycles of length >= 2. Length >= 2 means not the length=1 self-loop which occurs from the triangular partition when n is a triangular number. See A074909 for self-loops included. - Kevin Ryde, Sep 27 2019

Examples

			The a(2) = 2 through a(12) = 10 partitions (empty columns not shown):
  (2)   (22)   (32)   (322)   (332)   (432)   (4322)   (4332)
  (11)  (31)   (221)  (331)   (422)   (3321)  (4331)   (4422)
        (211)  (311)  (421)   (431)   (4221)  (4421)   (4431)
                      (3211)  (3221)  (4311)  (5321)   (5322)
                              (3311)          (43211)  (5331)
                              (4211)                   (5421)
                                                       (43221)
                                                       (43311)
                                                       (44211)
                                                       (53211)
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]+1==otbmax[#]&]],{n,0,30}]
  • PARI
    a(n) = my(t=ceil(sqrtint(8*n+1)/2), r=n-t*(t-1)/2); if(r==0,0, binomial(t,r)); \\ Kevin Ryde, Sep 27 2019

Formula

Positions of zeros are A000217 = n * (n + 1) / 2.
a(n) = A074909(n) - A010054(n). - Kevin Ryde, Sep 27 2019
Showing 1-10 of 16 results. Next