cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A106529 Numbers having k prime factors (counted with multiplicity), the largest of which is the k-th prime.

Original entry on oeis.org

2, 6, 9, 20, 30, 45, 50, 56, 75, 84, 125, 126, 140, 176, 189, 196, 210, 264, 294, 315, 350, 396, 416, 440, 441, 490, 525, 594, 616, 624, 660, 686, 735, 875, 891, 924, 936, 968, 990, 1029, 1040, 1088, 1100, 1225, 1386, 1404, 1452, 1456, 1485, 1540, 1560
Offset: 1

Views

Author

Matthew Ryan (mattryan1994(AT)hotmail.com), May 30 2005

Keywords

Comments

It seems that the ratio between successive terms tends to 1 as n increases, meaning perhaps that most numbers are in this sequence.
The number of terms that have the k-th prime as their largest prime factor is A000984(k), the k-th central binomial coefficient. E.g., 6 and 9 are the A000984(2)=2 terms in {a(n)} that have prime(2)=3 as their largest prime factor.
The sequence contains the positive integers m such that the rank of the partition B(m) = 0. For m >= 2, B(m) is defined as the partition obtained by taking the prime decomposition of m and replacing each prime factor p with its index i (i.e., i-th prime = p); also B(1) = the empty partition. For example, B(350) = B(2*5^2*7) = [1,3,3,4]. B is a bijection between the positive integers and the set of all partitions. The rank of a partition P is the largest part of P minus the number of parts of P. - Emeric Deutsch, May 09 2015
Also Heinz numbers of balanced partitions, counted by A047993. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Feb 08 2021

Examples

			a(7)=50 because 50=2*5*5 is, for k=3, the product of k primes, the largest of which is the k-th prime, and 50 is the 7th such number.
		

Crossrefs

Cf. A000984.
A001222 counts prime factors.
A056239 adds up prime indices.
A061395 selects maximum prime index.
A112798 lists the prime indices of each positive integer.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A090858 counts partitions of rank 1.
- A098124 counts balanced compositions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Maple
    with(numtheory): a := proc (n) options operator, arrow: pi(max(factorset(n)))-bigomega(n) end proc: A := {}: for i from 2 to 1600 do if a(i) = 0 then A := `union`(A, {i}) else  end if end do: A; # Emeric Deutsch, May 09 2015
  • Mathematica
    Select[Range@ 1560, PrimePi@ FactorInteger[#][[-1, 1]] == PrimeOmega@ # &] (* Michael De Vlieger, May 09 2015 *)

Formula

For all terms, A001222(a(n)) = A061395(a(n)). - Gus Wiseman, Feb 08 2021

A006141 Number of integer partitions of n whose smallest part is equal to the number of parts.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 23, 25, 29, 33, 38, 42, 49, 54, 62, 69, 78, 87, 99, 109, 123, 137, 154, 170, 191, 211, 236, 261, 290, 320, 357, 392, 435, 479, 530, 582, 644, 706, 779, 854, 940, 1029, 1133, 1237, 1358, 1485
Offset: 1

Views

Author

Keywords

Comments

Or, number of partitions of n in which number of largest parts is equal to the largest part.
a(n) is the number of partitions of n-1 without parts that differ by less than 2 and which have no parts less than three. [MacMahon]
There are two conflicting choices for the offset in this sequence. For the definition given here the offset is 1, and that is what we shall adopt. On the other hand, if one arrives at this sequence via the Rogers-Ramanujan identities (see the next comment), the natural offset is 0.
Related to Rogers-Ramanujan identities: Let G[1](q) and G[2](q) be the generating functions for the two Rogers-Ramanujan identities of A003114 and A003106, starting with the constant term 1. The g.f. for the present sequence is G[3](q) = (G[1](q) - G[2](q))/q = 1+q^3+q^4+q^5+q^6+q^7+2*q^8+2*q^9+3*q^10+.... - Joerg Arndt, Oct 08 2012; N. J. A. Sloane, Nov 18 2015
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[3](x). - N. J. A. Sloane, Nov 22 2015
From Wolfdieter Lang, Oct 31 2016: (Start)
From Hardy (H) p. 94, eq. (6.12.1) and Hardy-Wright (H-W), p. 293, eq. (19.14.3) for H_2(a,x) - H_1(a,x) = a*H_1(a*x,x) one finds from the result for H_1(a,x) (in (H) on top on p. 95), after putting a=x, the o.g.f. of a(n) = A003114(n) - A003106(n), n >= 0, with a(0) = 0 as Sum_{m>=0} x^((m+1)^2) / Product_{j=1..m} (1 - x^j). The m=0 term is 1*x^1. See the formula given by Joerg Arndt, Jan 29 2011.
This formula has a combinatorial interpretation (found similar to the one given in (H) section 6.0, pp. 91-92 or (H-W) pp. 290-291): a(n) is the number of partitions of n with parts differing by at least 2 and part 1 present. See the example for a(15) below. (End)
The Heinz numbers of these integer partitions are given by A324522. - Gus Wiseman, Mar 09 2019

Examples

			G.f. = x + x^4 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 3*x^12 + ...
a(15) = 5 because the partitions of 15 where the smallest part equals the number of parts are
3 + 6 + 6,
3 + 5 + 7,
3 + 4 + 8,
3 + 3 + 9, and
2 + 13.
- _Joerg Arndt_, Oct 08 2012
a(15) = 5 because the partitions of 15 with parts differing by at least 2 and part 1 present are: [14,1] obtained from the partition of 11 with one part, [11], added to the first part of the special partition [3,1] of 4 and  [11,3,1], [10,4,1], [9,5,1], [8,6,1] from adding all partition of 15 - 9 = 6 with one part, [6], and those with two parts, [5,1], [4,1], [3,3], to the special partition [5,3,1] of 9. - _Wolfdieter Lang_, Oct 31 2016
a(15) = 5 because the partitions of 14 with parts >= 3 and parts differing by at least 2 are [14], [11,3], [10,4], [9,5] and [8,6]. See the second [MacMahon] comment. This follows from the g.f. G[3](q) given in Andrews - Baxter, eq. (5.1) for i=3, (using summation index  m) and  m*(m+2) = 3 + 5 + ... + (2*m+1). - _Wolfdieter Lang_, Nov 02 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(8) = 1 through a(15) = 5 integer partitions:
  (6,2)  (7,2)    (8,2)    (9,2)    (10,2)   (11,2)   (12,2)   (13,2)
         (3,3,3)  (4,3,3)  (4,4,3)  (5,4,3)  (5,5,3)  (6,5,3)  (6,6,3)
                           (5,3,3)  (6,3,3)  (6,4,3)  (7,4,3)  (7,5,3)
                                             (7,3,3)  (8,3,3)  (8,4,3)
                                                               (9,3,3)
(End)
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 92-95.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 292-294.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 45, Section 293.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
A003106 counts partitions with minimum > length.
A003114 counts partitions with minimum >= length.
A026794 counts partitions by minimum.
A039899 counts partitions with minimum < length.
A039900 counts partitions with minimum <= length.
A239950 counts partitions with minimum equal to number of distinct parts.
Sequences related to balance:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 ranks balanced partitions.
- A340596 counts co-balanced factorizations.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i,i)))))
        end:
    a:= n-> add(b(n-j^2, j-1), j=0..isqrt(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Oct 08 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n<0, 0, If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]]; a[n_] := Sum[b[n-j^2, j-1], {j, 0, Sqrt[n]}]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Min[#]==Length[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(j=1, k-1, 1 - x^j, 1 + O(x ^ (n - k^2 + 1) ))), n))} /* Michael Somos, Jan 22 2008 */

Formula

G.f.: Sum_{m>=1} (x^(m^2)-x^(m*(m+1))) / Product_{i=1..m} (1-x^i) .
G.f.: Sum_{n>=1} x^(n^2)/Product_{k=1..n-1} (1-x^k). - Joerg Arndt, Jan 29 2011
a(n) = A003114(n) - A003106(n) = A039900(n) - A039899(n), (offset 1). - Vladeta Jovovic, Jul 17 2004
Plouffe in his 1992 dissertation conjectured that this has g.f. = (1+z+z^4+2*z^5-z^3-z^8+3*z^10-z^7+z^9)/(1+z-z^4-2*z^3-z^8+z^10), but Michael Somos pointed out on Jan 22 2008 that this is false.
Expansion of ( f(-x^2, -x^3) - f(-x, -x^4) ) / f(-x) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 22 2007
a(n) ~ sqrt(1/sqrt(5) - 2/5) * exp(2*Pi*sqrt(n/15)) / (2*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Nov 01 2016

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000
Better description from Naohiro Nomoto, Feb 06 2002
Name shortened by Gus Wiseman, Apr 07 2021 (balanced partitions are A047993).

A064174 Number of partitions of n with nonnegative rank.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, 42, 56, 73, 96, 125, 161, 207, 265, 336, 426, 536, 672, 840, 1046, 1296, 1603, 1975, 2425, 2970, 3628, 4417, 5367, 6503, 7861, 9482, 11412, 13702, 16423, 19642, 23447, 27938, 33231, 39453, 46767, 55342, 65386, 77135
Offset: 1

Views

Author

Vladeta Jovovic, Sep 20 2001

Keywords

Comments

The rank of a partition is the largest summand minus the number of summands.
This sequence (up to proof) equals "partitions of 2n with even number of parts, ending in 1, with max descent of 1, where the number of odd parts in odd places equals the number of odd parts in even places. (See link and 2nd Mathematica line.) - Wouter Meeussen, Mar 29 2013
Number of partitions p of n such that max(max(p), number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n with maximum part greater than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324521. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(311) (51) (61) (62)
(321) (322) (71)
(411) (331) (332)
(421) (422)
(511) (431)
(4111) (521)
(611)
(4211)
(5111)
Also the number of integer partitions of n with maximum part less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324562. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (11) (21) (22) (221) (222) (322) (332)
(111) (211) (311) (321) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			a(20) = p(19) - p(15) + p(8) = 490 - 176 + 22 = 336.
		

Crossrefs

Programs

  • Maple
    f:= n -> add((-1)^(k+1)*combinat:-numbpart(n-(3*k^2-k)/2),k=1..floor((1+sqrt(24*n+1))/6)):
    map(f, [$1..100]); # Robert Israel, Aug 03 2015
  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; First[q] >= Length[q]], {n, 16}]
    (* also *)
    Table[Count[IntegerPartitions[2n],q_/;Last[q]===1 && Max[q-PadRight[Rest[q],Length[q]]]<=1 && Count[First/@Partition[q,2],?OddQ]==Count[Last/@Partition[q,2],?OddQ]],{n,16}]
    (* also *)
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[Max[p], Length[p]]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
  • PARI
    {a(n) = my(A=1); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2))) \\ Seiichi Manyama, May 21 2023

Formula

a(n) = (A000041(n) + A047993(n))/2.
a(n) = p(n-1) - p(n-5) + p(n-12) - ... -(-1)^k*p(n-(3*k^2-k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015
A064173(n) + a(n) = A000041(n). - R. J. Mathar, Feb 22 2023
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2). - Seiichi Manyama, May 21 2023

Extensions

Mathematica programs modified by Clark Kimberling, Feb 12 2014

A168659 Number of partitions of n such that the number of parts is divisible by the greatest part. Also number of partitions of n such that the greatest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 6, 8, 9, 14, 16, 22, 25, 33, 39, 51, 60, 79, 92, 116, 137, 174, 204, 254, 300, 368, 435, 530, 625, 760, 896, 1076, 1267, 1518, 1780, 2121, 2484, 2946, 3444, 4070, 4749, 5594, 6514, 7637, 8879, 10384, 12043, 14040, 16255
Offset: 1

Views

Author

Vladeta Jovovic, Dec 02 2009

Keywords

Examples

			a(5)=3 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,1,3] the number of parts is divisible by the greatest part; not true for the partitions [1,2,2],[2,3], [1,4], and [5]. - _Emeric Deutsch_, Dec 04 2009
From _Gus Wiseman_, Feb 08 2021: (Start)
The a(1) = 1 through a(10) = 9 partitions of the first type:
  1  11  21   22    311    321     322      332       333        4222
         111  1111  2111   2211    331      2222      4221       4321
                    11111  111111  2221     4211      4311       4411
                                   4111     221111    51111      52111
                                   211111   311111    222111     222211
                                   1111111  11111111  321111     322111
                                                      21111111   331111
                                                      111111111  22111111
                                                                 1111111111
The a(1) = 1 through a(11) = 14 partitions of the second type (A=10, B=11):
  1   2   3    4    5     6     7      8      9       A       B
          21   22   41    42    43     44     63      64      65
                    311   321   61     62     81      82      83
                                322    332    333     622     A1
                                331    611    621     631     632
                                4111   4211   4221    4222    641
                                              4311    4321    911
                                              51111   4411    4322
                                                      52111   4331
                                                              4421
                                                              8111
                                                              52211
                                                              53111
                                                              611111
(End)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of equality is A047993 (A106529).
The Heinz numbers of these partitions are A340609/A340610.
If all parts (not just the greatest) are divisors we get A340693 (A340606).
The strict case in the second interpretation is A340828 (A340856).
A006141 = partitions whose length equals their minimum (A324522).
A067538 = partitions whose length/max divides their sum (A316413/A326836).
A200750 = partitions with length coprime to maximum (A340608).
Row sums of A350879.

Programs

  • Maple
    a := proc (n) local pn, ct, j: with(combinat): pn := partition(n): ct := 0: for j to numbpart(n) do if `mod`(nops(pn[j]), max(seq(pn[j][i], i = 1 .. nops(pn[j])))) = 0 then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 50); # Emeric Deutsch, Dec 04 2009
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Length[#],Max[#]]&]],{n,30}] (* Gus Wiseman, Feb 08 2021 *)
    nmax = 100; s = 0; Do[s += Normal[Series[Sum[x^((m+1)*k - 1) * Product[(1 - x^(m*k + j - 1))/(1 - x^j), {j, 1, k-1}], {k, 1, (1 + nmax)/(1 + m) + 1}], {x, 0, nmax}]], {m, 1, nmax}]; Rest[CoefficientList[s, x]] (* Vaclav Kotesovec, Oct 18 2024 *)

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^((i+1)*j-1) * Product_{k=1..j-1} (1-x^(i*j+k-1))/(1-x^k). - Seiichi Manyama, Jan 24 2022
a(n) ~ c * exp(Pi*sqrt(2*n/3)) / n^(3/2), where c = 0.04628003... - Vaclav Kotesovec, Nov 16 2024

Extensions

Extended by Emeric Deutsch, Dec 04 2009

A324521 Numbers > 1 where the maximum prime index is less than or equal to the number of prime factors counted with multiplicity.

Original entry on oeis.org

2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 126, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 189, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions with nonnegative rank (A064174). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  27: {2,2,2}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  40: {1,1,1,3}
  45: {2,2,3}
  48: {1,1,1,1,2}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(pi(max(factorset(n)))<=bigomega(n)):
    select(q, [$2..300])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]<=PrimeOmega[#]&]
  • PARI
    isok(m) = (m>1) && (primepi(vecmax(factor(m)[, 1])) <= bigomega(m)); \\ Michel Marcus, Nov 14 2022
    
  • Python
    from sympy import factorint, primepi
    def ok(n):
        f = factorint(n)
        return primepi(max(f)) <= sum(f.values())
    print([k for k in range(2, 257) if ok(k)]) # Michael S. Branicky, Nov 15 2022

Formula

A061395(a(n)) <= A001222(a(n)).

A039900 Number of partitions satisfying 0 < cn(0,5) + cn(1,5) + cn(4,5).

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 9, 13, 19, 27, 38, 52, 71, 95, 127, 167, 220, 285, 370, 474, 607, 770, 976, 1226, 1540, 1920, 2391, 2960, 3660, 4501, 5529, 6760, 8254, 10038, 12190, 14750, 17825, 21470, 25825, 30975, 37101, 44322, 52879, 62937, 74811, 88733, 105110, 124261
Offset: 0

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: o < 0 + 1 + 4 (OMZAAp).
Number of partitions of n such that (greatest part) >= (multiplicity of greatest part), for n >= 1. For example, a(6) counts these 9 partitions: 6, 51, 42, 411, 33, 321, 3111, 22111, 21111. See the Mathematica program at A240057 for the sequence as a count of these partitions, along with counts of related partitions. - Clark Kimberling, Apr 02 2014
The Heinz numbers of these integer partitions are given by A324561. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n whose minimum part is less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324560. For example, the a(1) = 1 through a(7) = 13 integer partitions are:
(1) (11) (21) (22) (32) (42) (52)
(111) (31) (41) (51) (61)
(211) (221) (222) (322)
(1111) (311) (321) (331)
(2111) (411) (421)
(11111) (2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
(End)

Examples

			From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(7) = 13 integer partitions with at least one part equal to 0, 1, or 4 modulo 5:
  (1)  (11)  (21)   (4)     (5)      (6)       (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (321)     (331)
                            (2111)   (411)     (421)
                            (11111)  (2211)    (511)
                                     (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t,
          `if`(i<1, 0, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i,
          `if`(irem(i, 5) in {2, 3}, t, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; Min[p] <= Length[p]], {n, 40}] (* Clark Kimberling, Feb 13 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n==0, t, If[i<1, 0, b[n, i-1, t] + If[i > n, 0, b[n-i, i, If[MemberQ[{2, 3}, Mod[i, 5]], t, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^k*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: Sum_{k>=0} x^k * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
a(n) = A000041(n) - A003106(n). - Vaclav Kotesovec, Oct 20 2024

A340610 Numbers whose number of prime factors (A001222) divides their greatest prime index (A061395).

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 11, 13, 14, 17, 19, 20, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 52, 53, 56, 57, 58, 59, 61, 65, 67, 71, 73, 74, 75, 78, 79, 83, 84, 86, 87, 89, 91, 92, 95, 97, 101, 103, 106, 107, 109, 111, 113, 117, 122, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        29: {10}       56: {1,1,1,4}
     3: {2}        30: {1,2,3}    57: {2,8}
     5: {3}        31: {11}       58: {1,10}
     6: {1,2}      35: {3,4}      59: {17}
     7: {4}        37: {12}       61: {18}
     9: {2,2}      38: {1,8}      65: {3,6}
    11: {5}        39: {2,6}      67: {19}
    13: {6}        41: {13}       71: {20}
    14: {1,4}      43: {14}       73: {21}
    17: {7}        45: {2,2,3}    74: {1,12}
    19: {8}        47: {15}       75: {2,3,3}
    20: {1,1,3}    49: {4,4}      78: {1,2,6}
    21: {2,4}      50: {1,3,3}    79: {22}
    23: {9}        52: {1,1,6}    83: {23}
    26: {1,6}      53: {16}       84: {1,1,2,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
The case where all parts are multiples, not just the maximum part, is A143773 (A316428), with strict case A340830, while the case of factorizations is A340853.
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340609.
The squarefree case is A340828 (A340856).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      g mod m = 0;
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

Formula

A001222(a(n)) divides A061395(a(n)).

A324562 Numbers > 1 where the maximum prime index is greater than or equal to the number of prime factors counted with multiplicity.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions enumerated by A064174. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(pi(max(factorset(n)))>=bigomega(n)):
    select(q, [$2..100])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]>=PrimeOmega[#]&]

Formula

A061395(a(n)) >= A001222(a(n)).

A340609 Numbers whose number of prime factors (A001222) is divisible by their greatest prime index (A061395).

Original entry on oeis.org

2, 4, 6, 8, 9, 16, 20, 24, 30, 32, 36, 45, 50, 54, 56, 64, 75, 81, 84, 96, 125, 126, 128, 140, 144, 160, 176, 189, 196, 210, 216, 240, 256, 264, 294, 315, 324, 350, 360, 384, 396, 400, 416, 440, 441, 486, 490, 512, 525, 540, 576, 594, 600, 616, 624, 660, 686
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If n is a term, then so is n^k for k > 1. - Robert Israel, Feb 08 2021

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}             64: {1,1,1,1,1,1}      216: {1,1,1,2,2,2}
      4: {1,1}           75: {2,3,3}            240: {1,1,1,1,2,3}
      6: {1,2}           81: {2,2,2,2}          256: {1,1,1,1,1,1,1,1}
      8: {1,1,1}         84: {1,1,2,4}          264: {1,1,1,2,5}
      9: {2,2}           96: {1,1,1,1,1,2}      294: {1,2,4,4}
     16: {1,1,1,1}      125: {3,3,3}            315: {2,2,3,4}
     20: {1,1,3}        126: {1,2,2,4}          324: {1,1,2,2,2,2}
     24: {1,1,1,2}      128: {1,1,1,1,1,1,1}    350: {1,3,3,4}
     30: {1,2,3}        140: {1,1,3,4}          360: {1,1,1,2,2,3}
     32: {1,1,1,1,1}    144: {1,1,1,1,2,2}      384: {1,1,1,1,1,1,1,2}
     36: {1,1,2,2}      160: {1,1,1,1,1,3}      396: {1,1,2,2,5}
     45: {2,2,3}        176: {1,1,1,1,5}        400: {1,1,1,1,3,3}
     50: {1,3,3}        189: {2,2,2,4}          416: {1,1,1,1,1,6}
     54: {1,2,2,2}      196: {1,1,4,4}          440: {1,1,1,3,5}
     56: {1,1,1,4}      210: {1,2,3,4}          441: {2,2,4,4}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of equality is A047993 (A106529).
These are the Heinz numbers of certain partitions counted by A168659.
The reciprocal version is A340610, with strict case A340828 (A340856).
If all parts (not just the greatest) are divisors we get A340693 (A340606).
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413).
A067538 counts partitions whose maximum divides their sum (A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).

Programs

  • Maple
    filter:= proc(n) local F,m,g,t;
      F:= ifactors(n)[2];
      m:= add(t[2],t=F);
      g:= numtheory:-pi(max(seq(t[1],t=F)));
      m mod g = 0;
    end proc:
    seelect(filter, [$2..1000]); # Robert Israel, Feb 08 2021
  • Mathematica
    Select[Range[2,100],Divisible[PrimeOmega[#],PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

A061395(a(n)) divides A001222(a(n)).

A347043 Smallest divisor of n with half (rounded up) as many prime factors (counting multiplicity) as n.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 4, 3, 2, 11, 4, 13, 2, 3, 4, 17, 6, 19, 4, 3, 2, 23, 4, 5, 2, 9, 4, 29, 6, 31, 8, 3, 2, 5, 4, 37, 2, 3, 4, 41, 6, 43, 4, 9, 2, 47, 8, 7, 10, 3, 4, 53, 6, 5, 4, 3, 2, 59, 4, 61, 2, 9, 8, 5, 6, 67, 4, 3, 10, 71, 8, 73, 2, 15, 4, 7, 6, 79, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2021

Keywords

Comments

Appears to contain every positive integer at least once.
This is correct. For any integer m, let p be any prime > m. Then a(m*p^A001222(m)) = m. - Sebastian Karlsson, Oct 11 2022

Examples

			The divisors of 123456 with half bigomega are: 16, 24, 5144, 7716, so a(123456) = 16.
		

Crossrefs

Positions of 2's are A001747.
Positions of odd terms are A005408.
Positions of even terms are A005843.
The case of powers of 2 is A016116.
The smallest divisor without the condition is A020639 (greatest: A006530).
These divisors are counted by A096825 (exact: A345957).
The greatest of these divisors is A347044 (exact: A347046).
The exact version is A347045.
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors (min: A033676, max: A033677).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).

Programs

  • Mathematica
    Table[Min[Select[Divisors[n],PrimeOmega[#]==Ceiling[PrimeOmega[n]/2]&]],{n,100}]
    a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]}, Times @@ p[[1 ;; Ceiling[Length[p]/2]]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
  • PARI
    a(n) = my(bn=ceil(bigomega(n)/2)); fordiv(n, d, if (bigomega(d)==bn, return (d))); \\ Michel Marcus, Aug 18 2021
    
  • Python
    from sympy import divisors, factorint
    def a(n):
        npf = len(factorint(n, multiple=True))
        for d in divisors(n):
            if len(factorint(d, multiple=True)) == (npf+1)//2: return d
        return 1
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Aug 18 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A347043(n):
        fs = factorint(n,multiple=True)
        l = len(fs)
        return prod(fs[:(l+1)//2]) # Chai Wah Wu, Aug 20 2021

Formula

a(n) = Product_{k=1..ceiling(A001222(n)/2)} A027746(n,k). - Amiram Eldar, Nov 02 2024
Showing 1-10 of 31 results. Next