A007781 a(n) = (n+1)^(n+1) - n^n for n>0, a(0) = 1.
1, 3, 23, 229, 2869, 43531, 776887, 15953673, 370643273, 9612579511, 275311670611, 8630788777645, 293959006143997, 10809131718965763, 426781883555301359, 18008850183328692241, 808793517812627212561
Offset: 0
Examples
a(14) = 10809131718965763 = 3 * 61^2 * 968299894201.
References
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see equation (6.7).
Links
- Doug Bell, Table of n, a(n) for n = 0..100
- Andrew Cusumano, Problem H-656, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 45, No. 2 (2007), p. 187; A Sequence Tending To e, Solution to Problem H-656, ibid., Vol. 46-47, No. 3 (2008/2009), pp. 285-287.
- Ronald K. Hoeflin, Mega Test. [Wayback Machine link]
- Eric Weisstein's World of Mathematics, Power Difference Prime.
Programs
-
Magma
[1] cat [(n+1)^(n+1)-n^n: n in [1..20]]; // Vincenzo Librandi, Aug 19 2015
-
Maple
seq( `if`(n=0,1,(n+1)^(n+1) -n^n), n=0..20); # G. C. Greubel, Mar 05 2020
-
Mathematica
Join[{1},Table[(n+1)^(n+1)-n^n,{n,20}]] (* Harvey P. Dale, Feb 09 2011 *) Differences[Table[n^n,{n,0,20}]] (* Charles R Greathouse IV, Feb 09 2011 *)
-
PARI
first(m)=vector(m,i,i--;(i+1)^(i+1) - i^i) /* Anders Hellström, Aug 18 2015 */
-
Sage
[1]+[(n+1)^(n+1) -n^n for n in (1..20)] # G. C. Greubel, Mar 05 2020
Formula
a(n) = abs(discriminant(x^(n+1)-x+1)).
E.g.f.: W(-x)/(1+W(-x)) - W(-x)/((1+W(-x))^3*x) where W is the Lambert W function. - Robert Israel, Aug 19 2015
Limit_{n->oo} (a(n+2)/a(n+1) - a(n+1)/a(n)) = e (Cusumano, 2007). - Amiram Eldar, Jan 03 2022
Comments