cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007808 Number of directed column-convex polyominoes of height n: a(k+1)=(k+1)*a(k)+(a(1)+...+a(k)).

Original entry on oeis.org

1, 1, 3, 13, 69, 431, 3103, 25341, 231689, 2345851, 26065011, 315386633, 4128697741, 58145826519, 876660153671, 14089181041141, 240455356435473, 4343224875615731, 82776756452911579, 1660133837750060001, 34950186057896000021, 770651602576606800463
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of outcomes to a race with n contestants in which there is at most one tie (of at least two contestants). - Walden Freedman, Aug 21 2014
Let M(n) denote the n X n matrix with ones along the subdiagonal, ones everywhere above the main diagonal, the integers 3, 4, etc., along the main diagonal, and zeros everywhere else. Then equals a(n) equals the permanent of M(n-1) for n >= 2. - John M. Campbell, Apr 20 2021

Examples

			1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 431*x^5 + 3103*x^6 + 25341*x^7 + 231689*x^8 + ...
		

Crossrefs

Cf. A056542.

Programs

  • Maple
    a:=n->n!*n*(1-add(1/j/(j+1)/(j+1)!,j=1..n-1)): seq(a(n),n=1..22); # Emeric Deutsch, Aug 07 2006
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 1,
          (n^2*a(n-1)-1)/(n-1))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 03 2020
  • Mathematica
    a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ (Exp[x] - 2 x) / (1 - x)^2, {x, 0, n}]] (* Michael Somos, Oct 20 2011 *)
    a[n_] := n! + n!*Sum[(n - j)/(j + 1)!, {j, 1, n - 1}] (* Walden Freedman, Aug 21 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (exp(x + x * O(x^n)) - 2 * x) / (1 - x)^2, n))} /* Michael Somos, Oct 20 2011 */

Formula

E.g.f.: (exp(x) - 2 * x) / (1 - x)^2. - Michael Somos, Oct 20 2011
a(n) = A056542(n+1) - A056542(n).
a(n) = (a(n-1)^2 - 2 * a(n-2)^2 + a(n-2) * a(n-3) - 4 * a(n-1) * a(n-3)) / (a(n-2) - a(n-3)) if n>3. - Michael Somos, Oct 20 2011
a(n) = (n^2*a(n-1)-1)/(n-1). - Vladeta Jovovic, Apr 26 2003
a(n) = n!*n*(1-Sum_{j=1..n-1} 1/(j*(j+1)*(j+1)!)). - Emeric Deutsch, Aug 07 2006
Conjectures: E.g.f.: (-(x^2+1)*exp(-x)+1)*exp(x)/(-1+x)^2; a(n) = round(n!*n*(exp(1)-2)). - Simon Plouffe, Dec 08 2009
a(n) = n! + n!*Sum_{j=1..n-1} (n-j)/(j+1)!. - Walden Freedman, Aug 21 2014
Asymptotic approximation: a(n) ~ n!(1 + (n - 1)(e - 2)). - Walden Freedman, Aug 23 2014

Extensions

Added a(0) = 1. - Michael Somos, Oct 20 2011