cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A056542 a(n) = n*a(n-1) + 1, a(1) = 0.

Original entry on oeis.org

0, 1, 4, 17, 86, 517, 3620, 28961, 260650, 2606501, 28671512, 344058145, 4472755886, 62618582405, 939278736076, 15028459777217, 255483816212690, 4598708691828421, 87375465144740000, 1747509302894800001, 36697695360790800022, 807349297937397600485
Offset: 1

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Comments

For n >= 2 also operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of loop repetitions of the j search loop in step L2. - Hugo Pfoertner, Feb 06 2003
More directly: sum over all permutations of length n-1 of the product of the length of the first increasing run by the value of the first position. The recurrence follows from this definition. - Olivier Gérard, Jul 07 2011
This sequence shares divisibility properties with A000522; each of the primes in A072456 divide only a finite number of terms of this sequence. - T. D. Noe, Jul 07 2005
This sequence also represents the number of subdeterminant evaluations when calculation a determinant by Laplace recursive method. - Reinhard Muehlfeld, Sep 14 2010
Also, a(n) equals the number of non-isomorphic directed graphs of n+1 vertices with 1 component, where each vertex has exactly one outgoing edge, excluding loops and cycle graphs. - Stephen Dunn, Nov 30 2019

Examples

			a(4) = 4*a(3) + 1 = 4*4 + 1 = 17.
Permutations of order 3 .. Length of first run * First position
123..3*1
132..2*1
213..1*2
231..2*2
312..1*3
321..1*3
a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.

Crossrefs

Cf. A079751 (same recursion formula, but starting from a(3)=0), A038155, A038156, A080047, A080048, A080049.
Equals the row sums of A162995 triangle (n>=2). - Johannes W. Meijer, Jul 21 2009
Cf. A070213 (indices of primes).

Programs

  • Haskell
    a056542 n = a056542_list !! (n-1)
    a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list)
    -- Reinhard Zumkeller, Mar 24 2013
    
  • Magma
    [n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // Bruno Berselli, Dec 13 2013
  • Mathematica
    tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* T. D. Noe, Jul 12 2005 *)
    FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* Robert G. Wilson v, Oct 11 2005 *)

Formula

a(n) = floor((e-2)*n!).
a(n) = A002627(n) - n!.
a(n) = A000522(n) - 2*n!.
a(n) = n! - A056543(n).
a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, n > 2. - Gary Detlefs, Jun 22 2010
1/(e - 2) = 2! - 2!/(1*4) - 3!/(4*17) - 4!/(17*86) - 5!/(86*517) - ... (see A002627 and A185108). - Peter Bala, Oct 09 2013
E.g.f.: (exp(x) - 1 - x) / (1 - x). - Ilya Gutkovskiy, Jun 26 2022

Extensions

More terms from James Sellers, Jul 04 2000

A074143 a(1) = 1; a(n) = n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 2, 9, 48, 300, 2160, 17640, 161280, 1632960, 18144000, 219542400, 2874009600, 40475635200, 610248038400, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 24329020081766400000, 536454892802949120000
Offset: 1

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

a(n) is also the number of elements of the alternating semigroup (A^c_n) for F(n, p) if p = n - 1 (cf. A001710). - Bakare Gatta Naimat, Jan 15 2016

Crossrefs

Programs

Formula

a(n) = n^2 * a(n-1)/(n-1) for n > 2.
a(n) = n*ceiling(n!/2) = n*A001710(n) = ceiling(A001563(n)/2). - Henry Bottomley, Nov 27 2002
a(n) = ((n+1)!-n!)/2 for n > 1. - Vladimir Joseph Stephan Orlovsky, Apr 03 2011
G.f.: (U(0) + x)/(2*x) where U(k) = 1 - 1/(k+1 - x*(k+1)^2*(k+2)/(x*(k+1)*(k+2) - 1/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2012
G.f.: 1/2 + Q(0), where Q(k)= 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*binomial(n, j)*(j)^(n+1) / (n+1), n > 1, a(1) = 1. - Vladimir Kruchinin, Jun 01 2013
a(n) = numerator(n!/2*n). - Vincenzo Librandi, Apr 15 2014
a(n) is F(n;p) = n^2(n-1)!/2 if p = n-1 in A^c_n. For instance for n=4 and p=n-1: F(4; 4-1)= 4^2(4-1)!/2 = 16*6/2 = 48. - Bakare Gatta Naimat, Nov 18 2015
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: x/2 * (1 + 1/(1-x)^2).
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)
From Amiram Eldar, May 04 2025: (Start)
Sum_{n>=1} 1/a(n) = 2*ExpIntegralEi(1) - 2*gamma - 1 = 2*A091725 - 2*A001620 - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*gamma - 1 - 2*ExpIntegralEi(-1) = 2*A001620 - 1 + 2*A099285. (End)

Extensions

More terms from Henry Bottomley, Nov 27 2002

A052582 a(n) = 2*n*n!.

Original entry on oeis.org

0, 2, 8, 36, 192, 1200, 8640, 70560, 645120, 6531840, 72576000, 878169600, 11496038400, 161902540800, 2440992153600, 39230231040000, 669529276416000, 12093372555264000, 230485453406208000, 4622513815535616000, 97316080327065600000, 2145819571211796480000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Total number of pairs (a_i,a_(i+1)) in all permutations on [n] such that a_i,a_(i+1) are consecutive integers. - David Callan, Nov 04 2003
Number of permutations of {1,2,...,n+2} such that there is exactly one entry between the entries 1 and 2. Example: a(2)=8 because we have 1324, 1423, 2314, 2413, 3142, 4132, 3241 and 4231. - Emeric Deutsch, Apr 06 2008
Number of permutations of 0 to n distinct letters (ABC...) 1 times ("-" (0), A (1), AB (1-1), ABC (1-1-1), ABCD (1-1-1-1 )etc...) and one after the other to resemble motif:( "-",... BB (0-2), ABB (1-2-0), AABB (2-2-0-0), AAABB (3-2-0-0-0) AAAABB (4-2-0-0-0-0), AAAAABB (5-2-0-0-0-0-0), AAAAAABB (6-2-0-0-0-0-0-0), etc... 0 fixed point (or free fixed point). Example: if ABC (1-1-1) and motif ABB (1-2-0) then 2 * 0 (free) fixed point, if ABCD (1-1-1-1), and motif AABB (2-2-0-0) then 8 * 0 (free) fixed point, if ABCDE (1-1-1-1-1), and motif AAABB (3-2-0-0-0), then 36 * 0 (free) fixed point, if ABCDEF (1-1-1-1-1-1), and motif AAAABB (4-2-0-0-0-0), then 192 * 0 (free) fixed point, if ABCDEFG (1-1-1-1-1-1-1), and motif AAAAABB (5-2-0-0-0-0-0), then 1200 * 0 (free) fixed point, etc... - Zerinvary Lajos, Dec 07 2009

Crossrefs

Programs

  • Haskell
    a052582 n = a052582_list !! n
    a052582_list =  0 : 2 : zipWith
       div (zipWith (*) (tail a052582_list) (drop 2 a000290_list)) [1..]
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    a[ n_] := If[ n<0, 0, n! SeriesCoefficient[ 2 x / (1 - x)^2, {x, 0, n}]]; (* Michael Somos, Oct 20 2011 *)
    a[ n_] := If[ n<0, 0, 2 n n!]; (* Michael Somos, Oct 20 2011 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * n * n!)}; /* Michael Somos, Oct 20 2011 */
    

Formula

E.g.f.: 2*x / (1 - x)^2.
Recurrence: {a(0)=0, a(1)=2, (-n^2-2*n-1)*a(n)+a(n+1)*n=0.}.
a(n) = A138770(n+2,1). - Emeric Deutsch, Apr 06 2008
a(n) = A001339(n) - A007808(n). - Michael Somos, Oct 20 2011
a(n) = (a(n-1)^2 - 2 * a(n-2)^2 + a(n-2) * a(n-3) - 4 * a(n-1) * a(n-3)) / (a(n-2) - a(n-3)) if n>2. - Michael Somos, Oct 20 2011
a(n) = 2*n*n!. - Gary Detlefs, Sep 16 2010
a(n+1) = a(n) * (n+1)^2 / n. - Reinhard Zumkeller, Nov 12 2011
0 = a(n)*(+a(n+1) -4*a(n+2) +a(n+3)) +a(n+1)*(+2*a(n+1) -a(n+3)) + a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Jun 26 2017
From Amiram Eldar, Feb 14 2021: (Start)
Sum_{n>=1} 1/a(n) = (Ei(1) - gamma)/2 = (A091725 - A001620)/2, where Ei(x) is the exponential integral.
Sum_{n>=1} (-1)^(n+1)/a(n) = (gamma - Ei(-1))/2 = (A001620 + A099285)/2. (End)
a(n) = 2 * A001563(n). - Alois P. Heinz, Sep 03 2024

A082425 a(1)=1, a(n) = -1 + n*Sum_{j=1..n-1} a(j).

Original entry on oeis.org

1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979, 302258183029291439537, 6966331456484621749329
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (n^2*Self(n-1) +1)/(n-1): n in [1..30]]; // G. C. Greubel, Feb 03 2024
    
  • Maple
    a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008
  • Mathematica
    a[n_]:= a[n]= If[n<3, 1, -1 +n*Sum[a[j], {j,n-1}]];
    Table[a[n], {n,40}] (* G. C. Greubel, Feb 03 2024 *)
  • SageMath
    @CachedFunction # a = A082425
    def a(n): return 1 if (n==1) else -1 + n*sum(a(j) for j in range(1,n))
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 03 2024

Formula

For n >= 2, a(n) = floor(n*(3-e)*n!).
a(n) = n*A056543(n) - 1, n > 1. - Vladeta Jovovic, Apr 26 2003
From Peter Bala, Jul 09 2008: (Start)
In the following remarks we use an offset of 1, i.e., a(1) = 1, a(2) = 1, a(3) = 5, ... .
For n >= 2, a(n) = n*n!*Sum_{k = 2..n} 1/(k*(k-1)*k!).
For n >= 2, a(n) = 3*n*n! - Sum_{k = 0..n} (k+1)!*binomial(n,k).
Limit_{n -> oo} a(n)/(n*n!) = 3 - e.
E.g.f.: 1 + t + (3*t - exp(t))/(1-t)^2.
a(n) = A083746(n+2) - A001339(n).
Recurrence relation: a(1) = 1, a(2) = 1, a(3) = 5, a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n >= 4.
Recurrence relation: a(1) = 1, a(2) = 1, a(n) = (n^2*a(n-1) + 1)/(n-1) for n >= 3.
The recurrence relation x(n) = (n^2*x(n-1) - 1)/(n-1), for n >= 2, has the general solution x(n) = n*n!*x(1) - a(n); particular solutions are A007808 (x(1) = 1) and A001339 (x(1) = 3). (End)

Extensions

Offset corrected by G. C. Greubel, Feb 03 2024

A082430 a(1)=1; for n > 1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + 4.

Original entry on oeis.org

1, 6, 25, 132, 824, 5932, 48444, 442916, 4484524, 49828044, 602919332, 7892762164, 111156400476, 1675896499484, 26934050884564, 459674468429892, 8302870086014924, 158242935756990316, 3173649989348528004, 66813683986284800084, 1473241731897579841852
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Comments

More generally, if m is an integer and a(1)=1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + m then a(n) has a closed form formula as a(n) = floor/ceiling(n*r(m)*n!) where r(m) = frac(e*m) + 0 or + 1/2 or -1/2 + integer. (See Example section.)

Examples

			r(10) = frac(10*e) + 1/2 + 2;
r(12) = frac(12*e) - 1/2 + 3;
r(15) = frac(15*e) + 3;
r(18) = frac(18*e) - 1/2 + 4.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,t_,a_}]:=Module[{c=t(n+1)+4},{n+1,t+c,c}]; NestList[nxt,{1,1,1},20][[;;,3]] (* Harvey P. Dale, Mar 28 2024 *)

Formula

For n >= 2, a(n) = ceiling(n*(19/2 - 4*e)*n!).
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: -4 - 3*x/2 + (-19*x/2 + 4*exp(x))/(1-x)^2.
a(n) = -19*n/2 * n! + 4 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 4)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)

A082427 a(1)=1, a(n) = n * (Sum_{k=1..n-1} a(k)) - 2.

Original entry on oeis.org

1, 0, 1, 6, 38, 274, 2238, 20462, 207178, 2301978, 27853934, 364633318, 5135252562, 77423807858, 1244311197718, 21236244441054, 383579665216538, 7310577148832842, 146617686151591998, 3086688129507199958, 68061473255633759074, 1568654907415559018658
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Floor[n(11/2-2E)n!],{n,2,20}]] (* Harvey P. Dale, May 09 2013 *)

Formula

a(n) = floor(n*(11/2 - 2*e)*n!) for n >= 2.
a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n>3. - Gary Detlefs, Jun 30 2024
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: 2 + 3*x/2 + (11*x/2 - 2*exp(x))/(1-x)^2.
a(n) = 11*n/2 * n! - 2 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) + 2)/(n-1) for n > 2. (End)

Extensions

Offset changed to 1 by Georg Fischer, May 15 2024

A082428 a(1) = 1; a(n) = 3 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 5, 21, 111, 693, 4989, 40743, 372507, 3771633, 41907033, 507075099, 6638074023, 93486209157, 1409484384213, 22652427603423, 386601431098419, 6982988349215193, 133087542655630737, 2669144605482372003, 56192518010155200063, 1239045022123922161389, 28557037652760872672013
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Formula

for n>=2 a(n) = ceiling(n*(3e-7)*n!).
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: -3 - x + (-7*x + 3*exp(x))/(1-x)^2.
a(n) = -7 * n * n! + 3 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 3)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)

A383436 a(1) = 1; a(n) = 2 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 4, 17, 90, 562, 4046, 33042, 302098, 3058742, 33986022, 411230866, 5383385882, 75816017838, 1143072268942, 18370804322282, 313528393766946, 5663106612415462, 107932149554271158, 2164639221616216002, 45571352034025600042, 1004848312350264480926, 23159361103691809941342
Offset: 1

Views

Author

Seiichi Manyama, Apr 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-2-x/2+(-9*x/2+2*exp(x))/(1-x)^2))

Formula

E.g.f.: -2 - x/2 + (-9*x/2 + 2*exp(x))/(1-x)^2.
a(n) = -9*n/2 * n! + 2 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 2)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3.

A383437 a(1) = 1; a(n) = 5 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 7, 29, 153, 955, 6875, 56145, 513325, 5197415, 57749055, 698763565, 9147450305, 128826591795, 1942308614755, 31215674165705, 532747505761365, 9622751822814655, 183398328858349895, 3678155373214684005, 77434849962414400105, 1707438441671237522315
Offset: 1

Views

Author

Seiichi Manyama, Apr 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-5-2*x+(-12*x+5*exp(x))/(1-x)^2))

Formula

E.g.f.: -5 - 2*x + (-12*x + 5*exp(x))/(1-x)^2.
a(n) = -12 * n * n! + 5 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 5)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3.

A141827 a(n) = (n^3*a(n-1) - 1)/(n - 1) for n >= 2, with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 31, 418, 8917, 278656, 12037939, 688168846, 50334635593, 4586743668412, 509638185379111, 67832842473959674, 10655922890454756061, 1950921882527424922168, 411794588127327229725307, 99271909637837814308779366, 27107849458438912493917352209
Offset: 0

Views

Author

Peter Bala, Jul 09 2008, Oct 06 2008

Keywords

Comments

For related recurrences of the form a(n) = (n^k*a(n-1)-1)/(n-1) see A001339, A007808 (both k = 2) and A141828 (k = 4). a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences.
From Peter Bala, Jul 02 2016: (Start)
For k = 1,2,3,... and x in Z, the recurrence equation a(n) = (n^k*a(n-1) - 1)/(n - 1) with starting value a(1) = x produces an integer sequence. This is because the sequence also satisfies the second-order recurrence a(n) = (1 + (n^k - 1)/(n - 1))*a(n-1) - (n - 1)^(k-1)*a(n-2) with integer starting values a(1) = x, a(2) = x*2^k - 1. Here we take k = 3 and x = 4.
The solution to the recurrence is a(n) = n*n!^(k-1)*( x - Sum_{i = 2..n} 1/(i*(i-1)*i!^(k-1)) ). Hence limit (n -> inf) a(n)/(n*n!^(k-1)) equals the constant x - Sum_{i = 2..inf} 1/(i*(i-1)*i!^(k-1)). Note that the sequence b(n) := n*n!^(k-1) satisfies the same second-order recurrence but with starting values b(1) = 1, b(2) = 2^k. From this observation one can get a generalized continued fraction expansion for a(n)/b(n) and hence, by going to the limit, for the constant x - Sum_{i = 2..n} 1/(i*(i-1)*i!^(k-1)). See, for example, A130820. (End)

Crossrefs

Programs

  • Maple
    a(n) := n -> n!^2*sum((n-k+1)*(k+1)/k!^2, k = 0..n): seq(a(n), n = 0..16);
  • Mathematica
    a[0] = 1; a[1] = 4; a[n_] := a[n] = (n^3 a[n - 1] - 1)/(n - 1); Table[a@ n, {n, 0, 14}] (* or *)
    Table[n!^2 Sum[(n - k + 1) (k + 1)/k!^2, {k, 0, n}], {n, 0, 14}] (* or *)
    Table[n n!^2 (4 - Sum[ 1/(k!^2*k*(k - 1)), {k, 2, n}]), {n, 0, 14}] /. 0 -> 1 (* Michael De Vlieger, Jul 03 2016 *)

Formula

Sum_{n = 0..inf} a(n)*x^n/n!^2 = 1/(1 - x)^2*Sum_{n = 0..inf} (n + 1)*x^n/n!^2.
a(n) = n!^2*Sum_{k = 0..n} (n - k + 1)(k + 1)/k!^2.
a(n) = n*n!^2*(4 - Sum_{k = 2..n} 1/(k!^2*k*(k - 1))).
Congruence property: a(n) == (1 + n + n^2) (mod n^3).
The recurrence a(n) = (n^2 + n + 2)*a(n-1) - (n - 1)^2*a(n-2), n >= 2, shows that a(n) is always a positive integer. The sequence b(n) := n*n!^2 also satisfies the same recurrence with b(0) = 0, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/(n*n!^2) = 4 - 1^2/(8 - 2^2/(14 - 3^2/(22 -...-(n - 1)^2/(n^2 + n + 2)))), for n > 1. a(n)*b(n+1) - b(n)*a(n+1) = n!^2.
Limit_{n -> infinity} a(n)/(n*n!^2) = Sum_{n = 0..inf} (n + 1)/n!^2 = BesselI(0,2) + BesselI(1,2) = 3.87022 21569 ..., using the values of the modified Bessel function, BesselI(0, 2) = 2.27958 53023 ... and BesselI(1, 2) = 1.59063 68546 ... (see A070910 and A096789; Cf. A130820). This yields the continued fraction expansion BesselI(0,2) + BesselI(1,2) = 4 - 1^2/(8 - 2^2/(14 - 3^2/(22 -...-(n - 1)^2/(n^2 + n + 2 - ... )))).
Limit_{n -> infinity} a(n)/(n*n!^2) = Sum_{n = 1..inf} (n + n^2)/n!^2 = Sum_{n = 1..inf} n^3/n!^2 = 1/2 * Sum_{n = 1..inf} n^4/n!^2.
Limit_{n -> infinity} a(n)/(n*n!^2) = Sum_{n = 0..inf} A001405 (n)/n!.
Limit_{n -> infinity} a(n)/(n*n!^2) = 1 + Sum_{n = 0..inf} 1/(Product_{k = 0..n} A008619(k)).

Extensions

a(15)-a(16) from Jason Yuen, Jan 31 2025
Showing 1-10 of 13 results. Next