cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A074143 a(1) = 1; a(n) = n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 2, 9, 48, 300, 2160, 17640, 161280, 1632960, 18144000, 219542400, 2874009600, 40475635200, 610248038400, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 24329020081766400000, 536454892802949120000
Offset: 1

Views

Author

Amarnath Murthy, Aug 28 2002

Keywords

Comments

a(n) is also the number of elements of the alternating semigroup (A^c_n) for F(n, p) if p = n - 1 (cf. A001710). - Bakare Gatta Naimat, Jan 15 2016

Crossrefs

Programs

Formula

a(n) = n^2 * a(n-1)/(n-1) for n > 2.
a(n) = n*ceiling(n!/2) = n*A001710(n) = ceiling(A001563(n)/2). - Henry Bottomley, Nov 27 2002
a(n) = ((n+1)!-n!)/2 for n > 1. - Vladimir Joseph Stephan Orlovsky, Apr 03 2011
G.f.: (U(0) + x)/(2*x) where U(k) = 1 - 1/(k+1 - x*(k+1)^2*(k+2)/(x*(k+1)*(k+2) - 1/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 27 2012
G.f.: 1/2 + Q(0), where Q(k)= 1 - 1/(k+2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3)-1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
a(n) = Sum_{j = 0..n} (-1)^(n-j)*binomial(n, j)*(j)^(n+1) / (n+1), n > 1, a(1) = 1. - Vladimir Kruchinin, Jun 01 2013
a(n) = numerator(n!/2*n). - Vincenzo Librandi, Apr 15 2014
a(n) is F(n;p) = n^2(n-1)!/2 if p = n-1 in A^c_n. For instance for n=4 and p=n-1: F(4; 4-1)= 4^2(4-1)!/2 = 16*6/2 = 48. - Bakare Gatta Naimat, Nov 18 2015
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: x/2 * (1 + 1/(1-x)^2).
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)
From Amiram Eldar, May 04 2025: (Start)
Sum_{n>=1} 1/a(n) = 2*ExpIntegralEi(1) - 2*gamma - 1 = 2*A091725 - 2*A001620 - 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*gamma - 1 - 2*ExpIntegralEi(-1) = 2*A001620 - 1 + 2*A099285. (End)

Extensions

More terms from Henry Bottomley, Nov 27 2002

A082425 a(1)=1, a(n) = -1 + n*Sum_{j=1..n-1} a(j).

Original entry on oeis.org

1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979, 302258183029291439537, 6966331456484621749329
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (n^2*Self(n-1) +1)/(n-1): n in [1..30]]; // G. C. Greubel, Feb 03 2024
    
  • Maple
    a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008
  • Mathematica
    a[n_]:= a[n]= If[n<3, 1, -1 +n*Sum[a[j], {j,n-1}]];
    Table[a[n], {n,40}] (* G. C. Greubel, Feb 03 2024 *)
  • SageMath
    @CachedFunction # a = A082425
    def a(n): return 1 if (n==1) else -1 + n*sum(a(j) for j in range(1,n))
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 03 2024

Formula

For n >= 2, a(n) = floor(n*(3-e)*n!).
a(n) = n*A056543(n) - 1, n > 1. - Vladeta Jovovic, Apr 26 2003
From Peter Bala, Jul 09 2008: (Start)
In the following remarks we use an offset of 1, i.e., a(1) = 1, a(2) = 1, a(3) = 5, ... .
For n >= 2, a(n) = n*n!*Sum_{k = 2..n} 1/(k*(k-1)*k!).
For n >= 2, a(n) = 3*n*n! - Sum_{k = 0..n} (k+1)!*binomial(n,k).
Limit_{n -> oo} a(n)/(n*n!) = 3 - e.
E.g.f.: 1 + t + (3*t - exp(t))/(1-t)^2.
a(n) = A083746(n+2) - A001339(n).
Recurrence relation: a(1) = 1, a(2) = 1, a(3) = 5, a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n >= 4.
Recurrence relation: a(1) = 1, a(2) = 1, a(n) = (n^2*a(n-1) + 1)/(n-1) for n >= 3.
The recurrence relation x(n) = (n^2*x(n-1) - 1)/(n-1), for n >= 2, has the general solution x(n) = n*n!*x(1) - a(n); particular solutions are A007808 (x(1) = 1) and A001339 (x(1) = 3). (End)

Extensions

Offset corrected by G. C. Greubel, Feb 03 2024

A082430 a(1)=1; for n > 1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + 4.

Original entry on oeis.org

1, 6, 25, 132, 824, 5932, 48444, 442916, 4484524, 49828044, 602919332, 7892762164, 111156400476, 1675896499484, 26934050884564, 459674468429892, 8302870086014924, 158242935756990316, 3173649989348528004, 66813683986284800084, 1473241731897579841852
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Comments

More generally, if m is an integer and a(1)=1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + m then a(n) has a closed form formula as a(n) = floor/ceiling(n*r(m)*n!) where r(m) = frac(e*m) + 0 or + 1/2 or -1/2 + integer. (See Example section.)

Examples

			r(10) = frac(10*e) + 1/2 + 2;
r(12) = frac(12*e) - 1/2 + 3;
r(15) = frac(15*e) + 3;
r(18) = frac(18*e) - 1/2 + 4.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,t_,a_}]:=Module[{c=t(n+1)+4},{n+1,t+c,c}]; NestList[nxt,{1,1,1},20][[;;,3]] (* Harvey P. Dale, Mar 28 2024 *)

Formula

For n >= 2, a(n) = ceiling(n*(19/2 - 4*e)*n!).
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: -4 - 3*x/2 + (-19*x/2 + 4*exp(x))/(1-x)^2.
a(n) = -19*n/2 * n! + 4 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 4)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)

A082427 a(1)=1, a(n) = n * (Sum_{k=1..n-1} a(k)) - 2.

Original entry on oeis.org

1, 0, 1, 6, 38, 274, 2238, 20462, 207178, 2301978, 27853934, 364633318, 5135252562, 77423807858, 1244311197718, 21236244441054, 383579665216538, 7310577148832842, 146617686151591998, 3086688129507199958, 68061473255633759074, 1568654907415559018658
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Floor[n(11/2-2E)n!],{n,2,20}]] (* Harvey P. Dale, May 09 2013 *)

Formula

a(n) = floor(n*(11/2 - 2*e)*n!) for n >= 2.
a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n>3. - Gary Detlefs, Jun 30 2024
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: 2 + 3*x/2 + (11*x/2 - 2*exp(x))/(1-x)^2.
a(n) = 11*n/2 * n! - 2 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) + 2)/(n-1) for n > 2. (End)

Extensions

Offset changed to 1 by Georg Fischer, May 15 2024

A082428 a(1) = 1; a(n) = 3 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 5, 21, 111, 693, 4989, 40743, 372507, 3771633, 41907033, 507075099, 6638074023, 93486209157, 1409484384213, 22652427603423, 386601431098419, 6982988349215193, 133087542655630737, 2669144605482372003, 56192518010155200063, 1239045022123922161389, 28557037652760872672013
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Formula

for n>=2 a(n) = ceiling(n*(3e-7)*n!).
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: -3 - x + (-7*x + 3*exp(x))/(1-x)^2.
a(n) = -7 * n * n! + 3 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 3)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)

A383437 a(1) = 1; a(n) = 5 + n * Sum_{k=1..n-1} a(k).

Original entry on oeis.org

1, 7, 29, 153, 955, 6875, 56145, 513325, 5197415, 57749055, 698763565, 9147450305, 128826591795, 1942308614755, 31215674165705, 532747505761365, 9622751822814655, 183398328858349895, 3678155373214684005, 77434849962414400105, 1707438441671237522315
Offset: 1

Views

Author

Seiichi Manyama, Apr 27 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-5-2*x+(-12*x+5*exp(x))/(1-x)^2))

Formula

E.g.f.: -5 - 2*x + (-12*x + 5*exp(x))/(1-x)^2.
a(n) = -12 * n * n! + 5 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 5)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3.
Showing 1-6 of 6 results.