A254040
Number T(n,k) of primitive (= aperiodic) n-bead necklaces with colored beads of exactly k different colors; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 9, 6, 0, 0, 6, 30, 48, 24, 0, 0, 9, 89, 260, 300, 120, 0, 0, 18, 258, 1200, 2400, 2160, 720, 0, 0, 30, 720, 5100, 15750, 23940, 17640, 5040, 0, 0, 56, 2016, 20720, 92680, 211680, 258720, 161280, 40320
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 2, 2;
0, 0, 3, 9, 6;
0, 0, 6, 30, 48, 24;
0, 0, 9, 89, 260, 300, 120;
0, 0, 18, 258, 1200, 2400, 2160, 720;
0, 0, 30, 720, 5100, 15750, 23940, 17640, 5040;
...
The T(4,3) = 9 normal Lyndon words of length 4 with maximum 3 are: 1233, 1323, 1332, 1223, 1232, 1322, 1123, 1132, 1213. - _Gus Wiseman_, Dec 22 2017
Columns k=0-10 give:
A000007,
A063524,
A001037 (for n>1),
A056288,
A056289,
A056290,
A056291,
A254079,
A254080,
A254081,
A254082.
-
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1,
add(mobius(n/d)*k^d, d=divisors(n))/n)
end:
T:= (n, k)-> add(b(n, k-j)*binomial(k,j)*(-1)^j, j=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[MoebiusMu[n/d]*k^d, {d, Divisors[n]}]/n]; T[n_, k_] := Sum[b[n, k-j]*Binomial[k, j]*(-1)^j, {j, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 27 2015, after Alois P. Heinz *)
LyndonQ[q_]:=q==={}||Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
allnorm[n_,k_]:=If[k===0,If[n===0,{{}}, {}],Join@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Select[Subsets[Range[n-1]+1],Length[#]===k-1&]];
Table[Length[Select[allnorm[n,k],LyndonQ]],{n,0,7},{k,0,n}] (* Gus Wiseman, Dec 22 2017 *)
A087854
Triangle read by rows: T(n,k) is the number of n-bead necklaces with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 9, 6, 1, 6, 30, 48, 24, 1, 12, 91, 260, 300, 120, 1, 18, 258, 1200, 2400, 2160, 720, 1, 34, 729, 5106, 15750, 23940, 17640, 5040, 1, 58, 2018, 20720, 92680, 211680, 258720, 161280, 40320, 1, 106, 5613, 81876, 510312, 1643544, 2963520, 3024000, 1632960, 362880
Offset: 1
The triangle begins with T(1,1):
1;
1, 1;
1, 2, 2;
1, 4, 9, 6;
1, 6, 30, 48, 24;
1, 12, 91, 260, 300, 120;
1, 18, 258, 1200, 2400, 2160, 720;
1, 34, 729, 5106, 15750, 23940, 17640, 5040;
1, 58, 2018, 20720, 92680, 211680, 258720, 161280, 40320;
1, 106, 5613, 81876, 510312, 1643544, 2963520, 3024000, 1632960, 362880;
...
For T(4,2) = 4, the necklaces are AAAB, AABB, ABAB, and ABBB.
For T(4,4) = 6, the necklaces are ABCD, ABDC, ACBD, ACDB, ADBC, and ADCB.
-
with(numtheory):
T:= (n, k)-> (k!/n) *add(phi(d) *Stirling2(n/d, k), d=divisors(n)):
seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Jun 19 2013
-
Table[Table[Sum[EulerPhi[d]*StirlingS2[n/d,k]k!,{d,Divisors[n]}]/n,{k,1,n}],{n,1,10}]//Grid (* Geoffrey Critzer, Jun 18 2013 *)
-
T(n, k) = (k!/n) * sumdiv(n, d, eulerphi(d) * stirling(n/d, k, 2)); \\ Joerg Arndt, Sep 25 2020
A082425
a(1)=1, a(n) = -1 + n*Sum_{j=1..n-1} a(j).
Original entry on oeis.org
1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979, 302258183029291439537, 6966331456484621749329
Offset: 1
-
[n le 2 select 1 else (n^2*Self(n-1) +1)/(n-1): n in [1..30]]; // G. C. Greubel, Feb 03 2024
-
a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008
-
a[n_]:= a[n]= If[n<3, 1, -1 +n*Sum[a[j], {j,n-1}]];
Table[a[n], {n,40}] (* G. C. Greubel, Feb 03 2024 *)
-
@CachedFunction # a = A082425
def a(n): return 1 if (n==1) else -1 + n*sum(a(j) for j in range(1,n))
[a(n) for n in range(1,41)] # G. C. Greubel, Feb 03 2024
A082430
a(1)=1; for n > 1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + 4.
Original entry on oeis.org
1, 6, 25, 132, 824, 5932, 48444, 442916, 4484524, 49828044, 602919332, 7892762164, 111156400476, 1675896499484, 26934050884564, 459674468429892, 8302870086014924, 158242935756990316, 3173649989348528004, 66813683986284800084, 1473241731897579841852
Offset: 1
r(10) = frac(10*e) + 1/2 + 2;
r(12) = frac(12*e) - 1/2 + 3;
r(15) = frac(15*e) + 3;
r(18) = frac(18*e) - 1/2 + 4.
-
nxt[{n_,t_,a_}]:=Module[{c=t(n+1)+4},{n+1,t+c,c}]; NestList[nxt,{1,1,1},20][[;;,3]] (* Harvey P. Dale, Mar 28 2024 *)
A082427
a(1)=1, a(n) = n * (Sum_{k=1..n-1} a(k)) - 2.
Original entry on oeis.org
1, 0, 1, 6, 38, 274, 2238, 20462, 207178, 2301978, 27853934, 364633318, 5135252562, 77423807858, 1244311197718, 21236244441054, 383579665216538, 7310577148832842, 146617686151591998, 3086688129507199958, 68061473255633759074, 1568654907415559018658
Offset: 1
-
Join[{1},Table[Floor[n(11/2-2E)n!],{n,2,20}]] (* Harvey P. Dale, May 09 2013 *)
A082428
a(1) = 1; a(n) = 3 + n * Sum_{k=1..n-1} a(k).
Original entry on oeis.org
1, 5, 21, 111, 693, 4989, 40743, 372507, 3771633, 41907033, 507075099, 6638074023, 93486209157, 1409484384213, 22652427603423, 386601431098419, 6982988349215193, 133087542655630737, 2669144605482372003, 56192518010155200063, 1239045022123922161389, 28557037652760872672013
Offset: 1
A383436
a(1) = 1; a(n) = 2 + n * Sum_{k=1..n-1} a(k).
Original entry on oeis.org
1, 4, 17, 90, 562, 4046, 33042, 302098, 3058742, 33986022, 411230866, 5383385882, 75816017838, 1143072268942, 18370804322282, 313528393766946, 5663106612415462, 107932149554271158, 2164639221616216002, 45571352034025600042, 1004848312350264480926, 23159361103691809941342
Offset: 1
A383437
a(1) = 1; a(n) = 5 + n * Sum_{k=1..n-1} a(k).
Original entry on oeis.org
1, 7, 29, 153, 955, 6875, 56145, 513325, 5197415, 57749055, 698763565, 9147450305, 128826591795, 1942308614755, 31215674165705, 532747505761365, 9622751822814655, 183398328858349895, 3678155373214684005, 77434849962414400105, 1707438441671237522315
Offset: 1
A137268
Triangle T(n, k) = k! * (k+1)^(n-k), read by rows.
Original entry on oeis.org
1, 2, 2, 4, 6, 6, 8, 18, 24, 24, 16, 54, 96, 120, 120, 32, 162, 384, 600, 720, 720, 64, 486, 1536, 3000, 4320, 5040, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
Offset: 1
Triangle begins as:
1;
2, 2;
4, 6, 6;
8, 18, 24, 24;
16, 54, 96, 120, 120;
32, 162, 384, 600, 720, 720;
64, 486, 1536, 3000, 4320, 5040, 5040;
128, 1458, 6144, 15000, 25920, 35280, 40320, 40320;
256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880;
512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800, 3628800;
-
[Factorial(k)*(k+1)^(n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 28 2022
-
T[n_, k_]:= k!*(k+1)^(n-k);
Table[T[n, k], {n, 12}, {k, n}]//Flatten
-
def A137268(n,k): return factorial(k)*(k+1)^(n-k)
flatten([[A137268(n,k) for k in range(1,n+1)] for n in range(14)]) # G. C. Greubel, Nov 28 2022
A095238
a(1) = 1, a(n) = n*(sum of all previous terms mod n).
Original entry on oeis.org
1, 2, 0, 12, 0, 18, 35, 32, 9, 90, 11, 72, 117, 98, 30, 240, 34, 162, 247, 200, 63, 462, 69, 288, 425, 338, 108, 756, 116, 450, 651, 512, 165, 1122, 175, 648, 925, 722, 234, 1560, 246, 882, 1247, 968, 315, 2070, 329, 1152, 1617, 1250, 408, 2652, 424, 1458, 2035
Offset: 1
a(6) = 6*((1 + 2 + 0 + 12 + 0) mod 6) = 18.
-
A095238:=proc(n) option remember; n*(add(A095238(i),i=1..n-1) mod n) end: A095238(1):=1: seq(A095238(n),n=1..100);
-
a[1] = 1; a[n_] := a[n] = n*Mod[Sum[a[i], {i, n - 1}], n]; Table[ a[n], {n, 55}] (* Robert G. Wilson v, Jun 16 2004 *)
-
a=vector(1000);a[1]=1;for(i=2,1000,a[i]=i*lift(Mod(sum(j=1,i-1,a[j]),i)))
Showing 1-10 of 14 results.
Comments