cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007834 Number of point labeled reduced 5-free two-graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 16, 76, 1016, 10284, 157340, 2411756, 44953712, 899824256, 20283419872, 495216726096, 13202082981712, 378896535199888, 11690436112988224, 385173160930360192, 13509981115738946816, 502374681770910293568, 19746124320077115154112, 817908018939079281840320
Offset: 1

Views

Author

Keywords

Crossrefs

Row sums are A361355.

Programs

  • Mathematica
    CoefficientList[Series[-2*LambertW[-1/2*E^(-1/2)*(1+x)^(1/2)]/(1+x), {x, 0, 15}], x]* Range[0, 15]! (* Vaclav Kotesovec, Sep 30 2013 *)
  • PARI
    \\ B(x) gives the e.g.f. of A359986.
    B(n)={exp(2*x + intformal(serreverse(log(1 + x + O(x^n)) + log(1 + x + O(x^n)) - x)))}
    seq(n)={Vec(serlaplace(log(subst(B(n), x, log(1 + x + O(x*x^n)))/(1 + x))))} \\ Andrew Howroyd, Oct 15 2024

Formula

E.g.f.: -2*LambertW(-1/2*exp(-1/2)*(1+x)^(1/2))/(1+x). - Vladeta Jovovic, Aug 21 2006
a(n) ~ sqrt(2)*sqrt(4-exp(1)) * n^(n-1) / (8*exp(n-1)*(4*exp(-1)-1)^n). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: log(B(log(1 + x))/(1 + x)), where B(x) is the e.g.f. of A359986. - Andrew Howroyd, Oct 15 2024

Extensions

a(20) onwards from Andrew Howroyd, Oct 15 2024

A007832 Number of point labeled 5,6-free two-graphs with n nodes.

Original entry on oeis.org

1, 1, 2, 8, 52, 457, 4979, 64591, 972906, 16701834, 322063458, 6894918021, 162316253829, 4168330738093, 115980086558470, 3476156853885992, 111665862911781864, 3827642575341002133, 139457935266705019299, 5382149182666970080019, 219344947692643001216702
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007831.

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[(3 + E^(2*x) - E^x*(4 + ProductLog[-1 + E^(-x)] * (2 + ProductLog[-1 + E^(-x)])))/(2*(-1 + E^x)), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 16 2021 *)
  • PARI
    seq(n)=my(e=exp(x + O(x^2*x^n))); Vec(serlaplace((3 + e^2 - e*(4 + lambertw(1/e - 1) * (2 + lambertw(1/e - 1)))) / (2*(e - 1)))) \\ Andrew Howroyd, Oct 15 2024

Formula

STIRLING transform of A007831. - Sean A. Irvine, Feb 03 2018
From Vaclav Kotesovec, Nov 16 2021: (Start)
E.g.f.: (3 + exp(2*x) - exp(x)*(4 + LambertW(exp(-x) - 1) * (2 + LambertW(exp(-x) - 1)))) / (2*(exp(x) - 1)).
a(n) ~ (exp(1) - 1)^(3/2) * (-log(1-exp(-1)))^(3/2) * n^(n-2) / (exp(n-1) * (1 - log(exp(1) - 1))^n). (End)
Showing 1-2 of 2 results.