cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007852 Number of antichains in rooted plane trees on n nodes.

Original entry on oeis.org

1, 2, 7, 29, 131, 625, 3099, 15818, 82595, 439259, 2371632, 12967707, 71669167, 399751019, 2247488837, 12723799989, 72474333715, 415046380767, 2388355096446, 13803034008095, 80082677184820, 466263828731640, 2723428895205210, 15954063529603565, 93711351580424391
Offset: 1

Views

Author

Martin Klazar, Mar 15 1996

Keywords

Comments

Setting both offsets to zero, this is the Catalan transform of A007317. - R. J. Mathar, Jun 29 2009
a(n) is also the cumulated sizes of admissible cuts of general rooted trees of size n. - Antoine Genitrini, Mar 14 2013
a(n) is the moment of order 2*n of the sum of two position operators in the weakly monotonne Fock space - Anna Kula, May 09 2025
a(n) is the moment of order 2*n of the measure with the density defined by g(x) = 1/(4*Pi) * (sqrt(sqrt(100-16x^2)-x^2-10) - sqrt(4-x^2)) if |x|<=2, g(x) = 1/(4*Pi) * sqrt((-2x^2-2|x|sqrt(4-x^2)+20) if 2 <= |x| <= 5/2 and g(x)=0 otherwise - Anna Kula, May 09 2025

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-(1-Sqrt[1-4*x])/2-Sqrt[1-5*x-(1-Sqrt[1-4*x])/2])/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 08 2014 *)
  • Maxima
    a(n):=sum(binomial(2*i+1,i)*binomial(2*n-1,n-i-1),i,0,n)/((2*n-1)); /* Vladimir Kruchinin, Jun 09 2014 */
  • PARI
    N = 33;  x = 'x + O('x^N);
    B = (1-sqrt(1-4*x))/2;
    gf = (1-B-sqrt(1-5*x-B))/2;
    v = Vec(gf)
    \\ Joerg Arndt, Mar 14 2013
    
  • Python
    def a(n):
       l = [0,1,2,7]
       if n < 4:
          return l[n]
       for i in range(n-3):
          l[i%4] = ( (-500*i+2000*i**3)*l[i%4]+(120-220*i-1380*i**2-920*i**3)*l[(i+1)%4]+(-1488-1626*i-387*i**2+21*i**3)*l[(i+2)%4]+(1088*i+1104+351*i**2+37*i**3)*l[(i+3)%4] ) // (+42*i**2+146*i+168+4*i**3)
       return l[i%4]
    # Antoine Genitrini, Mar 14 2013
    

Formula

G.f.: A(z) = (1-B(z)-sqrt(1-5*z-B(z)))/2, where B(z) = (1-sqrt(1-4*z))/2.
a(1) = 1 and for n > 1 a(n) = Sum_{j=1..n-1} (a(j)+b(j))*a(n-j), where b(n) = C(2*n-2, n-1)/n (Catalan number).
Also REVERT[A(x)] = x + 2*x^2 + x^3*(A007440(x) (Reversion of Fibonacci). - Olivier Gérard, Jul 05 2001
a(n+1) = Sum_{k=0..n} A039599(n,k) * A000108(k). - Philippe Deléham, Mar 12 2007
P-recurrence: (-500*n+2000*n^3)*a(n)+(120-220*n-1380*n^2-920*n^3)*a(n+1)+(-1488-1626*n-387*n^2+21*n^3)*a(n+2)+(1088*n+1104+351*n^2+37*n^3)*a(n+3)+(-42*n^2-146*n-168-4*n^3)*a(n+4); a(0)=0; a(1)=1; a(2)=2; a(3)=7. - Antoine Genitrini, Mar 14 2013
a(n) ~ (25/4)^n / (sqrt(15*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2014
a(n) = (Sum_{i=0..n} binomial(2*i+1,i)*binomial(2*n-1,n-i-1))/(2*n-1). - Vladimir Kruchinin, Jun 09 2014
1 + 1/z*A(z)^2 = 1 + z + 4*z^2 + 18*z^3 + 86*z^4 + ... is the o.g.f. for A153294. - Peter Bala, Jul 21 2015

Extensions

More terms and formulas from Frank Ruskey, Nov 15 1997