A007878 Number of terms in discriminant of generic polynomial of degree n.
1, 2, 5, 16, 59, 246, 1103, 5247, 26059, 133881, 706799, 3815311, 20979619, 117178725, 663316190, 3798697446, 21976689397
Offset: 1
Examples
Discriminant of a_0 + a_1 x + ... + a_n x^n is 1/a_n times the determinant of a particular matrix; for n=4 that matrix is [ a_4 a_3 a_2 a_1 a_0 0 0 ] [ 0 a_4 a_3 a_2 a_1 a_0 0 ] [ 0 0 a_4 a_3 a_2 a_1 a_0 ] [ 4a_4 3a_3 2a_2 1a_1 0 0 0 ] [ 0 4a_4 3a_3 2a_2 1a_1 0 0 ] [ 0 0 4a_4 3a_3 2a_2 1a_1 0 ] [ 0 0 0 4a_4 3a_3 2a_2 1a_1 ] It is easy to see that there are no monomials in the expansion of this involving either a_4 * a_3 * a_2^4 * a_1 or a_4 * a_2^6. The discriminant of the cubic K3*x^3 + K2*x^2 + K1*x + K0 is -27*K3^2*K0^2 + 18*K3*K2*K1*K0 - 4*K2^3*K0 - 4*K3*K1^3 + K2^2*K1^2 which contains 5 monomials. - Bill Daly (bill.daly(AT)tradition.co.uk)
Links
- Kinji Kimura, Computing the general discriminant formula of degree 17, presented at Gröbner Bases, Resultants and Linear Algebra workshop, September 3-6, 2013, Research Institute for Symbolic Computation, Hagenberg, Austria. See abstract and author's website.
- Kinji Kimura, programs written in Maple, Magma, etc.
Programs
-
Magma
function Disc(n) F := FunctionField(Rationals(),n); R
:= PolynomialRing(F); f := x^n + &+[ (F.i)*x^(n-i) : i in [ 1..n ] ]; return Discriminant(f); end function; [ #Monomials(Numerator(Disc(n))) : n in [ 1..7 ] ] // Victor S. Miller, Dec 16 2006 -
Maple
A007878 := proc(n) local x,a,ii; nops(discrim(sum(a[ ii ]*x^ii, ii=0..n), x)) end;
-
Mathematica
Clear[f, g]; g[0] = f[0]; g[n_Integer?Positive] := g[n] = g[n - 1] + f[n] x^n; myFun[n_Integer?Positive] := Length@Resultant[g[n], D[g[n], x], x, Method -> "BezoutMatrix"]; Table[myFun[n], {n, 1, 8}] (* Artur Jasinski, improved by Jean-Marc Gulliet (jeanmarc.gulliet(AT)gmail.com) *)
-
Sage
A = InfinitePolynomialRing(QQ, 'a') a = A.gen() for N in range(1, 7): x = polygen(A, 'x') P = sum(a[i] * x^i for i in range(N + 1)) M = P.sylvester_matrix(diff(P, x), x) print(M.determinant().number_of_terms()) # Georg Muntingh, Jan 17 2014
Extensions
a(9) from Lyle Ramshaw (ramshaw(AT)pa.dec.com)
Entry revised by N. J. A. Sloane, Dec 16 2006
a(10) from Artur Jasinski, Apr 02 2008
a(11) from Georg Muntingh, Jan 17 2014
a(12) from Georg Muntingh, Mar 10 2014
a(13)-a(14) from Seiichi Manyama, Nov 08 2023
a(15)-a(17) from Kimura (2013) added by Andrey Zabolotskiy, Jun 30 2024
Comments