Original entry on oeis.org
1, 3, 11, 43, 187, 857, 4144, 20812, 107822, 572918, 3108512, 17164308, 96199106, 546137465, 3135381256, 18177991951
Offset: 1
Original entry on oeis.org
2, 5, 59, 1103, 706799, 20979619, 21976689397
Offset: 1
A039744
Number of ways n*(n-1) can be partitioned into the sum of 2*(n-1) integers in the range 0..n.
Original entry on oeis.org
1, 1, 2, 5, 18, 73, 338, 1656, 8512, 45207, 246448, 1371535, 7764392, 44585180, 259140928, 1521967986, 9020077206, 53885028921, 324176252022, 1962530559999, 11947926290396, 73108804084505, 449408984811980, 2774152288318052, 17190155366056138, 106894140685782646
Offset: 0
Bill Daly (bill.daly(AT)tradition.co.uk)
-
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
n, 0, b(n-i, i, t-1))))
end:
a:= n-> b(n*(n-1), n, 2*(n-1)):
seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016
-
T[0,p_,m_]=1; T[k_,0,m_]=0; T[k_,p_,m_]:=T[k,p,m]=Sum[T[k+i,p-1,-i], {i,-m,-1}]; Table[T[n(n-1),2n-2,n], {n,40}] (* T. D. Noe, Dec 19 2006 *)
-
a039744(n) = polcoef(matpascal(3*n-1, x)[3*n-1, n+1], n*(n-1)); \\ Max Alekseyev, Jun 16 2023
-
def a039744(n): return gaussian_binomial(3*n-2, n)[n*(n-1)] # Max Alekseyev, Jun 16 2023
Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006
A138800
Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.
Original entry on oeis.org
1, 1, 2, 6, 19, 76, 320, 1469, 7048, 35233, 181656, 960800, 5189579
Offset: 1
a(4)=6 because discriminant of quartic x^4+a*x^2+b*x+c is -4*a^3*b^2 - 27*b^4 + 16*a^4*c + 144*a*b^2*c - 128*a^2*c^2 + 256*c^3 that consists of 6 monomials (parts).
-
1, 1, seq(nops(expand(discrim(x^n + add(c[i]*x^i,i=0..n-2),x))),n=3..12); # Robert Israel, Aug 10 2015
-
ClearAll[f]; a = {1,1}; Do[k = 0; Do[If[n > s - 2, If[n > s - 1, k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 8}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-2}], x]], {n, 3, 8}]}] (* Vaclav Kotesovec, Mar 20 2019 *)
a(2) and Mathematica program corrected [previously had erroneous a(2)=2 because of Length syntax in Mathematica] by Alan Sokal and Andrea Sportiello (sokal(AT)nyu.edu), Jun 17 2010
A138801
Number of monomials in discriminant of symbolic principal (with two zeros coefficients by x^(n-1) and x^(n-2)) polynomial n degree.
Original entry on oeis.org
1, 1, 2, 2, 6, 23, 92, 409, 1916, 9346, 47182, 244865, 1300086
Offset: 1
a(5)=6 because discriminant of quintic x^5+a*x^2+b*x+c is: -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
-
a = {1, 1}; Do[k = 0; Do[If[n > s - 3, If[(n > s - 1) && ((n > s - 2)), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 9}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-3}], x]], {n, 3, 9}]}] (* Vaclav Kotesovec, Mar 20 2019 *)
A138802
Number of monomials in discriminant of symbolic Tschirnhausen polynomial of degree n (with three zero coefficients at x^(n-1), x^(n-2) and x^(n-3)).
Original entry on oeis.org
1, 1, 1, 2, 2, 7, 26, 115, 521, 2502, 12389, 63236, 330455, 1762852
Offset: 1
a(5)=7 because discriminant of sextic x^6+a*x^2+b*x+c is -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
-
a = {1, 1, 1}; Do[k = 0; Do[If[n > s - 4, If[(n > s - 1) && (n > s - 2) && (n > s - 3), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 4, 10}]; a (* Artur Jasinski, fixed by Vaclav Kotesovec, Mar 20 2019 *)
Flatten[{1, 1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-4}], x]], {n, 4, 10}]}] (* Vaclav Kotesovec, Mar 20 2019 *)
A138896
Ratio of (2n-1)! to number of zeros in Sylvester matrix of polynomial of n degree with all nonzero coefficients.
Original entry on oeis.org
3, 15, 280, 11340, 798336, 86486400, 13343616000, 2778808032000, 750895681536000, 255454710858547200, 106826515449937920000, 53858368206010368000000, 32215590089995124736000000, 22555515290152300904448000000, 18272974787062050706056806400000, 16959604724241965811558973440000000
Offset: 2
A138897
Ratio of (2n-1)! to number of zeros in upper part of Sylvester matrix of polynomial of degree n with all nonzero coefficients.
Original entry on oeis.org
3, 20, 420, 18144, 1330560, 148262400, 23351328000, 4940103168000, 1351612226764800, 464463110651904000, 195848611658219520000, 99430833611096064000000, 59828953024276660224000000, 42103628541617628354969600000, 34261827725741345073856512000000, 31923961833867229762934538240000000
Offset: 2
A138898
Ratio of (2*n-1)! to number of zeros in lower part of Sylvester matrix for polynomial of degree n with all nonzero coefficients.
Original entry on oeis.org
60, 840, 30240, 1995840, 207567360, 31135104000, 6351561216000, 1689515283456000, 567677135241216000, 235018333989863424000, 117509166994931712000000, 69800445194989436928000000, 48581109855712648101888000000, 39156374543704394370121728000000, 36180490078382860397992476672000000, 37989514582302003417892100505600000000, 44979585265445572046784246998630400000000, 59642930061980828534035911520183910400000000
Offset: 3
-
Table[(2 n - 1)!/((n - 1)(n - 2)), {n, 3, 20}] (* R. J. Mathar, Apr 30 2008 *)
Showing 1-9 of 9 results.
Comments