cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A138787 First differences of A007878.

Original entry on oeis.org

1, 3, 11, 43, 187, 857, 4144, 20812, 107822, 572918, 3108512, 17164308, 96199106, 546137465, 3135381256, 18177991951
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Crossrefs

Formula

a(n) = A007878(n+1)-A007878(n).

Extensions

a(9)-a(11) from Vaclav Kotesovec, Mar 29 2019
a(12)-a(13) from Seiichi Manyama, Nov 08 2023
a(14)-a(16) from the data at A007878 added by Amiram Eldar, Oct 24 2024

A138788 a(n) = A007878(prime(n)).

Original entry on oeis.org

2, 5, 59, 1103, 706799, 20979619, 21976689397
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Comments

Previous name was: Number of monomials in discriminant of symbolic polynomial of prime degree with all nonzero coefficients.
Conjecture: All numbers in this sequence are primes.
This conjecture is false, A007878(11) = 706799 = 41 * 17239. - Vaclav Kotesovec, Mar 29 2019

Crossrefs

Subset of A007878.

Formula

a(n) = A007878(prime(n)).

Extensions

a(5) from Vaclav Kotesovec, Mar 29 2019
New name using formula from Joerg Arndt, Sep 07 2023
a(6) from Seiichi Manyama, Nov 08 2023
a(7) from the data at A007878 added by Amiram Eldar, Oct 24 2024

A039744 Number of ways n*(n-1) can be partitioned into the sum of 2*(n-1) integers in the range 0..n.

Original entry on oeis.org

1, 1, 2, 5, 18, 73, 338, 1656, 8512, 45207, 246448, 1371535, 7764392, 44585180, 259140928, 1521967986, 9020077206, 53885028921, 324176252022, 1962530559999, 11947926290396, 73108804084505, 449408984811980, 2774152288318052, 17190155366056138, 106894140685782646
Offset: 0

Views

Author

Bill Daly (bill.daly(AT)tradition.co.uk)

Keywords

Comments

An upper bound on A007878.
The indices of the odd terms appear to be A118113. - T. D. Noe, Dec 19 2006

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
          n, 0, b(n-i, i, t-1))))
        end:
    a:= n-> b(n*(n-1), n, 2*(n-1)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 15 2016
  • Mathematica
    T[0,p_,m_]=1; T[k_,0,m_]=0; T[k_,p_,m_]:=T[k,p,m]=Sum[T[k+i,p-1,-i], {i,-m,-1}]; Table[T[n(n-1),2n-2,n], {n,40}] (* T. D. Noe, Dec 19 2006 *)
  • PARI
    a039744(n) = polcoef(matpascal(3*n-1, x)[3*n-1, n+1], n*(n-1)); \\ Max Alekseyev, Jun 16 2023
  • Sage
    def a039744(n): return gaussian_binomial(3*n-2, n)[n*(n-1)] # Max Alekseyev, Jun 16 2023
    

Formula

a(n) = T(n(n+1),2n-2,n), where T(k,p,m) is a recursive function that gives the number of partitions of k into p parts of 0..m. It is defined T(k,p,m) = sum_{i=1..m} T(k-i,p-1,i), with the boundary conditions T(0,p,m)=1 and T(k,0,m)=0 for all positive k, p and m. - T. D. Noe, Dec 19 2006
a(n) = coefficient of q^(n*(n-1)) in q-binomial(3*n-2, n). - Max Alekseyev, Jun 16 2023
a(n) ~ 3^(3*n - 3/2) / (Pi * n^2 * 2^(2*n - 1)). - Vaclav Kotesovec, Jun 17 2023

Extensions

Definition corrected by Jozsef Pelikan (pelikan(AT)cs.elte.hu), Dec 05 2006
More terms from T. D. Noe, Dec 19 2006
a(0)=1 prepended by Alois P. Heinz, May 15 2016

A138800 Number of monomials in discriminant of polynomial x^n + a_{n-2} x^{n-2} + ... + a_0.

Original entry on oeis.org

1, 1, 2, 6, 19, 76, 320, 1469, 7048, 35233, 181656, 960800, 5189579
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Examples

			a(4)=6 because discriminant of quartic x^4+a*x^2+b*x+c is -4*a^3*b^2 - 27*b^4 + 16*a^4*c + 144*a*b^2*c - 128*a^2*c^2 + 256*c^3 that consists of 6 monomials (parts).
		

Crossrefs

Programs

  • Maple
    1, 1, seq(nops(expand(discrim(x^n + add(c[i]*x^i,i=0..n-2),x))),n=3..12); # Robert Israel, Aug 10 2015
  • Mathematica
    ClearAll[f]; a = {1,1}; Do[k = 0; Do[If[n > s - 2, If[n > s - 1, k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 8}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
    Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-2}], x]], {n, 3, 8}]}] (* Vaclav Kotesovec, Mar 20 2019 *)

Extensions

a(2) and Mathematica program corrected [previously had erroneous a(2)=2 because of Length syntax in Mathematica] by Alan Sokal and Andrea Sportiello (sokal(AT)nyu.edu), Jun 17 2010
a(9) to a(12) from Robert Israel, Aug 10 2015
a(13) from Vaclav Kotesovec, Mar 28 2019

A138801 Number of monomials in discriminant of symbolic principal (with two zeros coefficients by x^(n-1) and x^(n-2)) polynomial n degree.

Original entry on oeis.org

1, 1, 2, 2, 6, 23, 92, 409, 1916, 9346, 47182, 244865, 1300086
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Examples

			a(5)=6 because discriminant of quintic x^5+a*x^2+b*x+c is: -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
		

Crossrefs

Programs

  • Mathematica
    a = {1, 1}; Do[k = 0; Do[If[n > s - 3, If[(n > s - 1) && ((n > s - 2)), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 3, 9}]; a (* fixed by Vaclav Kotesovec, Mar 20 2019 *)
    Flatten[{1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-3}], x]], {n, 3, 9}]}] (* Vaclav Kotesovec, Mar 20 2019 *)

Extensions

a(10)-a(12) from Vaclav Kotesovec, Mar 21 2019
a(13) from Vaclav Kotesovec, Mar 28 2019

A138802 Number of monomials in discriminant of symbolic Tschirnhausen polynomial of degree n (with three zero coefficients at x^(n-1), x^(n-2) and x^(n-3)).

Original entry on oeis.org

1, 1, 1, 2, 2, 7, 26, 115, 521, 2502, 12389, 63236, 330455, 1762852
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Examples

			a(5)=7 because discriminant of sextic x^6+a*x^2+b*x+c is -27*a^4*b^2 + 256*b^5 + 108*a^5*c - 1600*a*b^3*c + 2250*a^2*b*c^2 + 3125*c^4 that consists of 6 monomials (parts).
		

Crossrefs

Programs

  • Mathematica
    a = {1, 1, 1}; Do[k = 0; Do[If[n > s - 4, If[(n > s - 1) && (n > s - 2) && (n > s - 3), k = k + x^n], k = k + f[n] x^n], {n, 0, s}]; m = Resultant[k, D[k, x], x]; AppendTo[a, Length[m]], {s, 4, 10}]; a (* Artur Jasinski, fixed by Vaclav Kotesovec, Mar 20 2019 *)
    Flatten[{1, 1, 1, Table[Length[Discriminant[x^n + Sum[Subscript[c, k]*x^k, {k, 0, n-4}], x]], {n, 4, 10}]}] (* Vaclav Kotesovec, Mar 20 2019 *)

Extensions

a(11)-a(13) from Vaclav Kotesovec, Mar 21 2019
a(14) from Vaclav Kotesovec, Mar 28 2019

A138896 Ratio of (2n-1)! to number of zeros in Sylvester matrix of polynomial of n degree with all nonzero coefficients.

Original entry on oeis.org

3, 15, 280, 11340, 798336, 86486400, 13343616000, 2778808032000, 750895681536000, 255454710858547200, 106826515449937920000, 53858368206010368000000, 32215590089995124736000000, 22555515290152300904448000000, 18272974787062050706056806400000, 16959604724241965811558973440000000
Offset: 2

Views

Author

Artur Jasinski, Apr 02 2008

Keywords

Comments

(2n-1)! = A009445(n-1) is the number of monomials in determinant of symbolic square matrix of size 2n-1 X 2n-1 without zeros.
Denominators in the series expansion of (1/2)*(Pi/(2*x))^(1/2)* (x*BesselI(1/2, x) - BesselI(3/2, x)). - Abdallah Daddi-Moussa-Ider, Jul 25 2024

Crossrefs

Programs

  • Mathematica
    Table[(2 n - 1)!/(2 (n - 1)^2), {n, 2, 20}]

Formula

a(n) = (2*n - 1)!/(2*(n - 1)^2).
Sum_{n=2..oo} 1/a(n) = (e^2 - 3)/(4*e) = 0.40366087623617955676434290... . - Stefano Spezia, Jul 25 2024, simplified by Vaclav Kotesovec, Aug 19 2025
Sum_{n>=2} (-1)^n/a(n) = cos(1)/2. - Amiram Eldar, Aug 19 2025

Extensions

a(15)-a(17) from Stefano Spezia, Jul 25 2024

A138897 Ratio of (2n-1)! to number of zeros in upper part of Sylvester matrix of polynomial of degree n with all nonzero coefficients.

Original entry on oeis.org

3, 20, 420, 18144, 1330560, 148262400, 23351328000, 4940103168000, 1351612226764800, 464463110651904000, 195848611658219520000, 99430833611096064000000, 59828953024276660224000000, 42103628541617628354969600000, 34261827725741345073856512000000, 31923961833867229762934538240000000
Offset: 2

Views

Author

Artur Jasinski, Apr 02 2008

Keywords

Comments

From Anthony Hernandez, Oct 24 2017: (Start)
If (n,n-1) is the two-part partition of any odd integer greater than 1 then a(n-1) is the number of permutations of shape (n,n-1). For example, the two-part partition of 11 with shape (n,n-1) is (6,5). Pictorially we can draw this as a standard Young diagram with cells populated by hook lengths:
(6,5) = 7 6 5 4 3 1
5 4 3 2 1
and there are a(6-1) = a(5) = 1330560 permutations with shape (6,5). (End)

Crossrefs

Programs

  • Maple
    A138897:=n->(2*n - 1)!/(n*(n - 1)): seq(A138897(n), n=2..20); # Wesley Ivan Hurt, Nov 25 2017
  • Mathematica
    Table[(2 n - 1)!/(n (n - 1)), {n, 2, 20}]
  • PARI
    a(n) = (2*n - 1)!/(n*(n - 1)); \\ Michel Marcus, Oct 28 2017

Formula

a(n) = (2n - 1)!/(n*(n - 1)).
Sum_{n>=2} 1/a(n) = (1 + e^2)/(8*e) = 0.38577015870381094461947640518926542... . - Stefano Spezia, Jul 27 2024
Sum_{n>=2} (-1)^n/a(n) = (2*sin(1) - cos(1))/4. - Amiram Eldar, Aug 19 2025

Extensions

More terms from Michel Marcus, Oct 28 2017

A138898 Ratio of (2*n-1)! to number of zeros in lower part of Sylvester matrix for polynomial of degree n with all nonzero coefficients.

Original entry on oeis.org

60, 840, 30240, 1995840, 207567360, 31135104000, 6351561216000, 1689515283456000, 567677135241216000, 235018333989863424000, 117509166994931712000000, 69800445194989436928000000, 48581109855712648101888000000, 39156374543704394370121728000000, 36180490078382860397992476672000000, 37989514582302003417892100505600000000, 44979585265445572046784246998630400000000, 59642930061980828534035911520183910400000000
Offset: 3

Views

Author

Artur Jasinski, Apr 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 n - 1)!/((n - 1)(n - 2)), {n, 3, 20}] (* R. J. Mathar, Apr 30 2008 *)

Formula

a(n) = (2*n-1)!/((n-1)*(n-2)). - R. J. Mathar, Apr 30 2008
Sum_{n=3..oo} 1/a(n) = (3*cosh(1) + 10*sinh(1) - 6*e)/4 = 0.0178907175323686230239526350278045532... . - Stefano Spezia, Jul 27 2024
Equivalently, Sum_{n=3..oo} 1/a(n) = (e^2 - 7)/(8*e). - Vaclav Kotesovec, Aug 19 2025
Sum_{n>=3} (-1)^(n+1)/a(n) = (2*sin(1) - 3*cos(1))/4. - Amiram Eldar, Aug 19 2025

Extensions

Edited and corrected by R. J. Mathar, Apr 30 2008
Showing 1-9 of 9 results.