A007898 a(n) = psi_c(n), where Product_{k>1} 1/(1-1/k^s)^A007897(k) = Sum_{k>0} psi_c(k)/k^s.
1, 1, 2, 3, 3, 4, 4, 7, 7, 6, 6, 12, 7, 8, 12, 16, 9, 15, 10, 18, 16, 12, 12, 32, 17, 14, 22, 24, 15, 30, 16, 34, 24, 18, 24, 48, 19, 20, 28, 48, 21, 40, 22, 36, 45, 24, 24, 78, 32, 37, 36, 42, 27, 54, 36, 64, 40, 30, 30, 96, 31, 32, 60, 78, 42, 60, 34, 54
Offset: 1
Keywords
Examples
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 7*x^8 + 7*x^9 + ...
References
- F. V. Weinstein, The Fibonacci Partitions, preprint, 1995.
Links
- F. V. Weinstein, Notes on Fibonacci partitions, arXiv:math/0307150 [math.NT], 2003-2018.
Programs
-
Mathematica
dircon[v_, w_] := Module[{lv = Length[v], lw = Length[w], fv, fw}, fv[n_] := If[n <= lv, v[[n]], 0]; fw[n_] := If[n <= lw, w[[n]], 0]; Table[ DirichletConvolve[fv[n], fw[n], n, m], {m, Min[lv, lw]}]]; a[n_] := Module[{A, v, w, m}, If[n<1, 0, v = Table[Boole[k == 1], {k, n}]; For[k = 2, k <= n, k++, m = Length[IntegerDigits[n, k]] - 1; A = Product[ {p, e} = pe; If[p == 2, If[e<3, e, 2^(e-2) + 2], 1 + p^(e-1) (p-1)/2], {pe, FactorInteger[k]}]; A = (1-x)^-A + x O[x]^m // Normal; w = Table[0, {n}]; For[i = 0, i <= m, i++, w[[k^i]] = Coefficient[A, x, i]]; v = dircon[v, w]]; v[[n]]]]; Array[a, 68] (* Jean-François Alcover, Nov 12 2018, from PARI *)
-
PARI
{a(n) = my(A, v, w, m, p, e); if( n<1, 0, v = vector(n, k, k==1); for(k=2, n, m = #digits(n, k) - 1; A = factor(k); A = prod( j=1, matsize(A)[1], if( p = A[j,1], e = A[j,2]; if( p==2, if( e<3, e, 2^(e-2) + 2), 1 + p^(e-1) * (p-1) / 2))); A = (1 - x)^ -A + x * O(x^m); w = vector(n); for(i=0, m, w[k^i] = polcoeff(A, i)); v = dirmul(v, w)); v[n])}; /* Michael Somos, May 26 2014 */
Extensions
New definition by Michel Marcus, May 12 2014
Definition edited by N. J. A. Sloane, May 26 2014
Comments