cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007899 Coordination sequence for hexagonal close-packing.

Original entry on oeis.org

1, 12, 44, 96, 170, 264, 380, 516, 674, 852, 1052, 1272, 1514, 1776, 2060, 2364, 2690, 3036, 3404, 3792, 4202, 4632, 5084, 5556, 6050, 6564, 7100, 7656, 8234, 8832, 9452, 10092, 10754, 11436, 12140, 12864, 13610, 14376, 15164, 15972, 16802, 17652, 18524, 19416, 20330, 21264, 22220
Offset: 0

Views

Author

Keywords

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #2.

Crossrefs

For partial sums see A007202.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    I:=[1,12,44,96,170]; [n le 5 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 16 2014
    
  • Magma
    [1] cat [2 + Floor(21*n^2/2): n in [1..50]]; // G. C. Greubel, Feb 20 2018
  • Mathematica
    Join[{1},Floor[(21Range[40]^2)/2]+2] (* or *) Join[{1},LinearRecurrence[ {2,0,-2,1},{12,44,96,170},40]] (* Harvey P. Dale, Feb 15 2014 *)
    CoefficientList[Series[(x^4 + 10 x^3 + 20 x^2 + 10 x + 1)/(1 - x)^3/(x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 16 2014 *)
  • PARI
    for(n=0,50, print1(if(n==0,1, 2 + floor(21*n^2/2)), ", ")) \\ G. C. Greubel, Feb 20 2018
    

Formula

a(n) = floor( 21*n^2 / 2 ) + 2, for n>= 1.
G.f.: (x^4 +10*x^3 +20*x^2 +10*x +1)/((1+x)*(1-x)^3).
a(0)=1, a(1)=12, a(2)=44, a(3)=96, a(4)=170, a(n)=2*a(n-1)-2*a(n-3)+ a(n-4). - Harvey P. Dale, Feb 15 2014
a(n) = (21/2)*n^2 + 7/4 + (1/4)*(-1)^n - 0^n. - Eric Simon Jacob, Feb 12 2023
E.g.f.: ((4 + 21*x + 21*x^2)*cosh(x) + 3*(1 + 7*x + 7*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Mar 14 2024