A007910 Expansion of 1/((1-2*x)*(1+x^2)).
1, 2, 3, 6, 13, 26, 51, 102, 205, 410, 819, 1638, 3277, 6554, 13107, 26214, 52429, 104858, 209715, 419430, 838861, 1677722, 3355443, 6710886, 13421773, 26843546, 53687091, 107374182, 214748365, 429496730, 858993459, 1717986918, 3435973837, 6871947674
Offset: 0
References
- M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..1000 (in replacement of a(0..999) indexed 1..1000 by Vincenzo Librandi)
- M. H. Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265 [math.NT], 2014.
- M. H. Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.
- I. Gessel, Problem 10424, Amer. Math. Monthly, 102 (1995), 70.
- S. G. Johnson and M. Frigo, A modified split-radix FFT with fewer arithmetic operations, IEEE Trans. Signal Processing 55 (2007), 111-119.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2).
Programs
-
Magma
[Round(2^(n+2)/5): n in [0..40]]; // Vincenzo Librandi, Jun 21 2011
-
Maple
A007910:=n->(1/5)*(2^(n-1)+2*cos(n*Pi/2)-sin(n*Pi/2)); [seq(V(n),n=0..12)]; seq(round(2^(n+2)/5),n=1..25) # Mircea Merca, Dec 27 2010
-
Mathematica
CoefficientList[Series[1/((1 - 2 x) (1 + x^2)), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *) LinearRecurrence[{2,-1,2},{1,2,3},40] (* Harvey P. Dale, Feb 22 2016 *)
-
PARI
a(n)=2^(n+2)\/5 \\ Charles R Greathouse IV, Jun 21 2011
-
Python
def A007910(n): return ((4<
Chai Wah Wu, Apr 17 2025
Formula
a(0) = 1, a(2n+1) = 2*a(2n) and a(2n) = 2*a(2n-1) + (-1)^n. [Corrected by M. F. Hasler, Feb 22 2018]
a(n) = (4*2^n+cos(Pi*n/2)+2*sin(Pi*n/2))/5. - Paul Barry, Dec 17 2003
a(n) = 2a(n-1)-a(n-2)+2a(n-3). Sequence equals half its second differences with first term dropped. a(n) + a(n+2) = 2^(n+2). - Paul Curtz, Dec 17 2007
a(n) = round(2^(n+2)/5). - Mircea Merca, Dec 27 2010
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*2^(n-2*k). - Gerry Martens, Oct 15 2022
Extensions
Entry revised by N. J. A. Sloane, Feb 24 2004
Offset corrected and minor edits by M. F. Hasler, Feb 22 2018
Comments