cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007946 a(n) = 6*(2*n+1)! / ((n!)^2*(n+3)).

Original entry on oeis.org

2, 9, 36, 140, 540, 2079, 8008, 30888, 119340, 461890, 1790712, 6953544, 27041560, 105306075, 410605200, 1602881040, 6263890380, 24502865310, 95937144600, 375945078600, 1474358525640, 5786272150230, 22724268808176, 89301056353200, 351140573438200, 1381487341784004
Offset: 0

Views

Author

David W. Wilson and Dean Hickerson, Apr 21 1997

Keywords

Comments

If Y is a fixed 2-subset of a 2n-set X then a(n-2) is the number of (n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007

Crossrefs

Programs

  • Magma
    [Binomial(2*n+2, n) + Binomial(2*n+3, n) : n in [0..30]]; // Wesley Ivan Hurt, Aug 23 2014
    
  • Maple
    A007946:=n->binomial(2*n+2,n)+binomial(2*n+3,n): seq(A007946(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
  • Mathematica
    Table[Binomial[2 n + 2, n] + Binomial[2 n + 3, n], {n, 0, 30}] (* Wesley Ivan Hurt, Aug 23 2014 *)
    Table[6*(2*n + 1)!/((n!)^2*(n + 3)), {n,0,50}] (* G. C. Greubel, Jan 23 2017 *)
  • PARI
    for(n=0,50, print1(6*(2*n + 1)!/((n!)^2*(n + 3)), ", ")) \\ G. C. Greubel, Jan 23 2017

Formula

a(n) = C(2n+2, n) + C(2n+3, n). - Emeric Deutsch, May 16 2003
From Karol A. Penson, Aug 23 2014: (Start)
O.g.f.: ((-2+1/z^2-2/z)/sqrt(1-4*z)-1/z^2)/(2*z).
Representation as the n-th moment of a signed function: w(x) = sqrt(x/(4-x))*(x^2-2*x-2)/(2*Pi) on the segment x = (0,4): a(n) = Integral_{x=0..4} x^n*w(x) dx. For x->0, w(x)->0, and for x->4, w(x)->infinity.
a(n) ~ (3/65536)*(4^n)*(-55332459+18443992*n - 6147840*n^2 + 2050048*n^3 - 688128*n^4 + 262144*n^5)/(n^(11/2)*sqrt(Pi)), for n->infinity.
(End)
a(n) = A001791(n+1) + A002054(n+1). - Wesley Ivan Hurt, Aug 23 2014
From Peter Luschny, Aug 25 2014: (Start)
a(n) = ((6*(2*n+1))/(n+3))* binomial(2*n,n).
a(n) has the asymptotic series 2^(2*n+3)*(1+(n+3)/((2*n+3))) *Sum_{k>=0}((num(k)/den(k))*(-n)^(-k))/sqrt(n*Pi). Here den(n) = 2^(4*n-A000120(n)) = A061549(n) and num(n) = 1, 25, 1297, 32755, 3249099, 79652055, 3876842453, 93900904955, 18138634602803, 437081823058595, 21036073578365391,... For example a(100) = 0.10602088220899083... *10^61 with the given values of num.
a(x) ~ exp(x*log(4)-(log(Pi)+cos(2*Pi*x)*(log(x) + 1/(4*x)))/2 + log((12*x+6)/ (3+x))). For example, this formula gives a(100) = 0.10602088... *10^61.
a(n) = A242986(2*n). (End)
a(n) = 12*4^n*Gamma(3/2+n)/(sqrt(Pi)*(3+n)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) = 2*Sum_{i=0..n} (1/(i+1)*binomial(2*i+3,i+3)*binomial(2*(n-i),n-i)). - Vladimir Kruchinin, Apr 20 2016
E.g.f.: 2*(x*(-1 + 3*x)*BesselI(0,2*x) + (1 - 2*x + 3*x^2) * BesselI(1,2*x))*exp(2*x)/x^2. - Ilya Gutkovskiy, Apr 20 2016
D-finite with recurrence n*(n+3)*a(n) -2*(n+2)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Mar 30 2022
From Amiram Eldar, Feb 16 2023: (Start)
Sum_{n>=0} 1/a(n) = 8*Pi/(27*sqrt(3)) + 1/9.
Sum_{n>=0} (-1)^n/a(n) = 8*log(phi)/(5*sqrt(5)) + 1/15, where phi is the golden ratio (A001622). (End)