A007971 INVERTi transform of central trinomial coefficients (A002426).
0, 1, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
Offset: 0
Keywords
Examples
G.f. = x + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
Programs
-
Mathematica
CoefficientList[Series[1-Sqrt[1-2x-3x^2],{x,0,40}],x] (* Harvey P. Dale, Dec 17 2012 *) a[1]:=1;a[2]:=2;a[n_]:=a[n]=1/2 Sum[a[k] a[n-k],{k,1,n-1}]; Join[{0},Map[a,Range[24]]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
-
PARI
x='x+O('x^50); concat([0], Vec(1 - sqrt(1 - 2*x - 3*x^2))) \\ G. C. Greubel, Feb 26 2017
Formula
G.f.: 1 - sqrt(1 - 2*x - 3*x^2). - Michael Somos, Jun 14 2000
a(0)=0, a(1)=1, a(2)=2, then a(n) = (1/2) *(a(1)*a(n-1)+a(2)*a(n-2)+....+a(n-1)*a(1)). - Benoit Cloitre, Oct 24 2003
a(n) = 2^(1-n)*Sum_{k=1..n} (binomial(k,n-k)*A000108(k-1)*3^(n-k)), n>0. - Vladimir Kruchinin, Feb 05 2011
G.f.: 1-sqrt(1-2*x-3*(x^2)) = x/G(0) ; G(k) = 1-2*x/(1+x/(1+x/(1-2*x/(1-x/(2-x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
a(n+2) = 2 * A001006(n). - Michael Somos, Jun 14 2000
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) for all n>0. - Michael Somos, Jan 25 2014
n*a(n) + (-2*n+3)*a(n-1) + *(-n+3)*a(n-2) = 0. - R. J. Mathar, Sep 06 2016
Extensions
Name corrected by Michael Somos, Mar 23 2012
Comments