A143977 Rectangular array R by antidiagonals: label each unit square in the first quadrant lattice by its northeast vertex (x,y) and mark squares having |x-y| == 0 (mod 3); then R(m,n) is the number of marked squares in the rectangle [0,m] X [0,n].
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 4, 4, 4, 4, 2, 3, 4, 5, 6, 5, 4, 3, 3, 5, 6, 7, 7, 6, 5, 3, 3, 6, 7, 8, 9, 8, 7, 6, 3, 4, 6, 8, 10, 10, 10, 10, 8, 6, 4, 4, 7, 9, 11, 12, 12, 12, 11, 9, 7, 4, 4, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 4, 5, 8, 11, 14, 15, 16, 17, 16, 15, 14, 11, 8, 5
Offset: 1
Examples
Northwest corner: 1 1 1 2 2 2 3 1 2 2 3 4 4 5 1 2 3 4 5 6 7 2 3 4 6 7 8 10 2 4 5 7 9 10 12
Links
- Stefano Spezia, First 140 antidiagonals of the array, flattened
Crossrefs
Programs
-
Mathematica
T[m_,n_]:=Ceiling[m n/3];Flatten[Table[T[m-n+1,n],{m,13},{n,m}]] (* Stefano Spezia, Oct 27 2022 *)
Formula
R(m,n) = ceiling(m*n/3). [Corrected by Stefano Spezia, Oct 27 2022]
Comments