cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008233 a(n) = floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 320, 400, 500, 625, 750, 900, 1080, 1296, 1512, 1764, 2058, 2401, 2744, 3136, 3584, 4096, 4608, 5184, 5832, 6561, 7290, 8100, 9000, 10000, 11000, 12100, 13310, 14641, 15972, 17424, 19008, 20736
Offset: 0

Views

Author

Keywords

Comments

a(n) is the maximal product of four nonnegative integers whose sum is n. - Andres Cicuttin, Sep 26 2018

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), this sequence (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).
Cf. A013662.

Programs

  • Haskell
    a008233 n = product $ map (`div` 4) [n..n+3]
    -- Reinhard Zumkeller, Jun 08 2011
    
  • Magma
    [Floor(n/4)*Floor((n+1)/4)*Floor((n+2)/4)*Floor((n+3)/4): n in [0..50]]; // Vincenzo Librandi, Jun 09 2011
    
  • Maple
    A008233:=n->floor(n/4)*floor((n+1)/4)*floor((n+2)/4)*floor((n+3)/4); seq(A008233(n), n=0..50); # Wesley Ivan Hurt, Dec 31 2013
  • Mathematica
    Table[Floor[n/4]*Floor[(n + 1)/4]*Floor[(n + 2)/4]*Floor[(n + 3)/4], {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *)
    Table[Times@@Floor[Range[n,n+3]/4],{n,0,50}] (* Harvey P. Dale, Mar 30 2019 *)
  • PARI
    a(n) = prod(i=0, 3, (n+i)\4); \\ Altug Alkan, Sep 27 2018

Formula

Let b(n) = A002620(n), the quarter-squares. Then this sequence is b(0)*b(0), b(0)*b(1), b(1)*b(1), b(1)*b(2), b(2)*b(2), b(2)*b(3), ...
From R. J. Mathar, Feb 20 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4) - 6*a(n-5) + 3*a(n-6) - 3*a(n-8) + 6*a(n-9) - 3*a(n-10) + a(n-12) - 2*a(n-13) + a(n-14).
G.f.: -x^4*(1+x^6+x^2+2*x^3+x^4) / ( (1+x)^3*(x^2+1)^3*(x-1)^5 ). (End)
Sum_{n>=4} 1/a(n) = 1 + zeta(4). - Amiram Eldar, Jan 10 2023
a(4*n) = n^4. - Bernard Schott, Jan 24 2023

Extensions

More terms from Stefan Steinerberger, Apr 03 2006