A008299 Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).
1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
Offset: 2
Examples
There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3. Table begins: 1; 1; 1, 3; 1, 10; 1, 25, 15; 1, 56, 105; 1, 119, 490, 105; 1, 246, 1918, 1260; 1, 501, 6825, 9450, 945; 1, 1012, 22935, 56980, 17325; 1, 2035, 74316, 302995, 190575, 10395; 1, 4082, 235092, 1487200, 1636635, 270270; 1, 8177, 731731, 6914908, 12122110, 4099095, 135135; ... Reading the table by diagonals produces the triangle A134991.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
- S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.
Links
- Vincenzo Librandi and Alois P. Heinz, Rows n = 2..200, flattened (rows n = 2..104 from Vincenzo Librandi)
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- Gilles Bonnet and Anna Gusakova, Concentration inequalities for Poisson U-statistics, arXiv:2404.16756 [math.PR], 2024. See p. 17.
- E. Rodney Canfield, J. William Helton, and Jared A. Hughes, Uniform Convergence of an Asymptotic Approximation to Associated Stirling Numbers, arXiv:2409.01489 [math.CO], 2024. See p. 12.
- Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms
- Tom Copeland, Short note on Lagrange inversion
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
- Daniel W. Cranston and Chun-Hung Liu, Proper Conflict-free Coloring of Graphs with Large Maximum Degree, arXiv:2211.02818 [math.CO], 2022.
- Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv:1104.4323 [hep-th], 2011.
- Ming-Jian Ding and Jiang Zeng, Proof of an explicit formula for a series from Ramanujan's Notebooks via tree functions, arXiv:2307.00566 [math.CO], 2023.
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
- F. A. Haight, Handbook of the Poisson distribution, John Wiley, 1967 [Annotated scan of page 7 only. Note that there is an error in the table.]
- Mathematics Stack Exchange, Mahler polynomials and the zeros of the incomplete gamma function, a Mathematics Stack Exchange question by Tom Copeland, Jan 06 2016.
- R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239 (See 332. From Tom Copeland, Jan 03 2016).
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- E. G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024. See p. 2.
- L. M. Smiley, Completion of a Rational Function Sequence of Carlitz, arXiv:math/0006106 [math.CO], 2000.
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan’s Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
- Eric Weisstein's World of Mathematics, Mahler polynomial
- Wikipedia, Mahler polynomials
Crossrefs
Programs
-
Maple
A008299 := proc(n,k) local i,j,t1; if k<1 or k>floor(n/2) then t1 := 0; else t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016 G:= exp(lambda*(exp(x)-1-x)): S:= series(G,x,21): seq(seq(coeff(coeff(S,x,n)*n!,lambda,k),k=1..floor(n/2)),n=2..20); # Robert Israel, Jan 15 2020 T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end: seq(seq(T(n,k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
-
Mathematica
t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *) Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
-
PARI
{T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
-
PARI
{ T(n,k) = sum(i=0,min(n,k), (-1)^i * binomial(n,i) * stirling(n-i,k-i,2) ); } /* Max Alekseyev, Feb 27 2017 */
Formula
T(n,k) = abs(A137375(n,k)).
E.g.f. with additional constant 1: exp(t*(exp(x)-1-x)) = 1 + t*x^2/2! + t*x^3/3! + (t+3*t^2)*x^4/4! + ....
Recurrence relation: T(n+1,k) = k*T(n,k) + n*T(n-1,k-1).
More generally, if S_r(n,k) gives the number of set partitions of [n] into k blocks of size at least r then we have the recurrence S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1) (for this sequence, r=2), with associated e.g.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*(t^n/n!) = exp(u*(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n, i)*Sum_{j=0..k-i} (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!). - David Wasserman, Jun 13 2007
G.f.: (R(0)-1)/(x^2*y), where R(k) = 1 - (k+1)*y*x^2/( (k+1)*y*x^2 - (1-k*x)*(1-x-k*x)/R(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
T(n,k) = Sum_{i=0..min(n,k)} (-1)^i * binomial(n,i) * Stirling2(n-i,k-i) = Sum_{i=0..min(n,k)} (-1)^i * A007318(n,i) * A008277(n-i,k-i). - Max Alekseyev, Feb 27 2017
T(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 11 2021
Extensions
Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Edited by Peter Bala, Dec 04 2011
Edited by N. J. A. Sloane, Jan 24 2020
Comments