A008348 a(0)=0; thereafter a(n) = a(n-1) + prime(n) if a(n-1) < prime(n), otherwise a(n) = a(n-1) - prime(n).
0, 2, 5, 0, 7, 18, 5, 22, 3, 26, 55, 24, 61, 20, 63, 16, 69, 10, 71, 4, 75, 2, 81, 164, 75, 172, 71, 174, 67, 176, 63, 190, 59, 196, 57, 206, 55, 212, 49, 216, 43, 222, 41, 232, 39, 236, 37, 248, 25, 252, 23, 256, 17, 258, 7, 264, 1, 270, 541, 264, 545, 262, 555
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
A008348 := proc(n) option remember; if n = 0 then 0 elif A008348(n-1)>=ithprime(n) then A008348(n-1)-ithprime(n); else A008348(n-1)+ithprime(n); fi; end; # Maple from N. J. A. Sloane, Aug 31 2019 (Start) # Riecaman transform Riecaman := proc(a,s,M) # Start with s, add or subtract a[n], get M terms. If a has w terms, can get M=w+1 terms. local b,M2,n,t; if whattype(a) <> list then ERROR("First argument should be a list"); fi; if a[1]=0 then ERROR("a[1] should not be zero"); fi; M2 := min(nops(a),M-1); b:=[s]; t:=s; for n from 1 to M2 do if a[n]>t then t:=t+a[n] else t:=t-a[n]; fi; b:=[op(b),t]; od: b; end; # Riecaman transform of primes, starting at s=0 p1:=[seq(ithprime(i),i=1..100)]; q0:=Riecaman(p1,0,99); # End
-
Mathematica
a := {0}; For[n = 2, n < 100, n++, If[a[[n - 1]] >= Prime[n - 1], b := a[[n - 1]] - Prime[n - 1], b := a[[n - 1]] + Prime[n - 1];]; a = Append[a, b]]; a (* Stefan Steinerberger, May 02 2006 *) nxt[{n_,a_}]:={n+1,If[a
Harvey P. Dale, Sep 13 2024 *) -
PARI
lista(nn) = {print1(a=0, ", "); for (n=1, nn, if (a < (p=prime(n)), a += p, a -= p); print1(a, ", "););} \\ Michel Marcus, Dec 04 2016
Formula
a(n) = c(1)p(1) + ... + c(n)p(n), where c(i) = 1 if a(i-1) > p(i) and c(i) = -1 if a(i-1) <= p(i) (p(i) = primes). - Clark Kimberling
Extensions
More terms from Clark Kimberling
Name edited by Dmitry Kamenetsky, Feb 14 2017
Comments