cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008477 If n = Product (p_j^k_j) then a(n) = Product (k_j^p_j).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 9, 8, 1, 1, 4, 1, 1, 1, 16, 1, 8, 1, 4, 1, 1, 1, 9, 32, 1, 27, 4, 1, 1, 1, 25, 1, 1, 1, 32, 1, 1, 1, 9, 1, 1, 1, 4, 8, 1, 1, 16, 128, 32, 1, 4, 1, 27, 1, 9, 1, 1, 1, 4, 1, 1, 8, 36, 1, 1, 1, 4, 1, 1, 1, 72, 1
Offset: 1

Views

Author

Keywords

Comments

For any n, the sequence n, a(n), a(a(n)), a(a(a(n))), ... is eventually periodic with period <= 2 [Farrokhi]. - N. J. A. Sloane, Apr 25 2009
a(A005117(n)) = 1; a(A013929(n)) > 1; A010052(a(A122132(n))) = 1. - Reinhard Zumkeller, Feb 17 2012
From Bernard Schott, Mar 26 2021: (Start)
The study of some properties of this sequence was proposed in the 1st problem of Concours Général in 2012 in France (see links).
Terms are precisely the powerful numbers in A001694.
If m is a term, there is a term q such that a(q) = m.
a(a(n)) <= n (see examples). (End)

Examples

			For n = 24 = 2^3*3^1, a(24) = 3^2*1^3 = 9, so a(9) = 2^3 = 8 and a(a(24)) = 8 < 24.
For n = 243 = 3^5, a(243) = 5^3 = 125, so a(125) = 3^5 = 243 and a(a(243)) = 243.
		

Crossrefs

Programs

  • Haskell
    a008477 n = product $ zipWith (^) (a124010_row n) (a027748_row n)
    -- Reinhard Zumkeller, Feb 17 2012
    
  • Maple
    A008477 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (e[j][2]^e[j][1], j=1..nops(e)) end:
    seq (A008477(n), n=1..60);
    # Peter Luschny, Jan 17 2010
  • Mathematica
    Prepend[ Array[ Times @@ Map[ Power @@ RotateLeft[ #1, 1 ]&, FactorInteger[ # ] ]&, 100, 2 ], 1 ]
    Table[Times@@(First[#]^Last[#]&/@Transpose[Reverse[ Transpose[ FactorInteger[ n]]]]),{n,80}] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    A008477(n)=factorback(factor(n)*[0,1;1,0]) \\ M. F. Hasler, May 20 2012
    
  • Python
    from sympy import factorint, prod
    a = lambda n: prod([pk[1]**pk[0] for pk in factorint(n).items()])
    print([a(n) for n in range(1,61)]) # Darío Clavijo, Nov 06 2023
    (APL, Dyalog dialect) A008477 ← {×/{⍺*⍨≢⍵}⌸factors(⍵)} ⍝ Needs also factors function from https://dfns.dyalog.com/c_factors.htm - Antti Karttunen, Feb 16 2024

Formula

Multiplicative with a(p^e) = e^p. - David W. Wilson, Aug 01 2001