A008578 Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 84 at pp. 214-217.
- G. Chrystal, Algebra: An Elementary Textbook. Chelsea Publishing Company, 7th edition, (1964), chap. III.7, p. 38.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 11.
- H. D. Huskey, Derrick Henry Lehmer [1905-1991]. IEEE Ann. Hist. Comput. 17 (1995), no. 2, 64-68. Math. Rev. 96b:01035
- D. H. Lehmer, The sieve problem for all-purpose computers. Math. Tables and Other Aids to Computation, Math. Tables and Other Aids to Computation, 7, (1953). 6-14. Math. Rev. 14:691e
- D. N. Lehmer, "List of Prime Numbers from 1 to 10,006,721", Carnegie Institute, Washington, D.C. 1909.
- R. F. Lukes, C. D. Patterson and H. C. Williams, Numerical sieving devices: their history and some applications. Nieuw Arch. Wisk. (4) 13 (1995), no. 1, 113-139. Math. Rev. 96m:11082
- H. C. Williams and J. O. Shallit, Factoring integers before computers. Mathematics of Computation 1943-1993: a half-century of computational mathematics (Vancouver, BC, 1993), 481-531, Proc. Sympos. Appl. Math., 48, AMS, Providence, RI, 1994. Math. Rev. 95m:11143
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]
- Chris K. Caldwell, Angela Reddick, Yeng Xiong, and Wilfrid Keller, The History of the Primality of One: A Selection of Sources, (a dynamic survey), Journal of Integer Sequences, Vol. 15 (2012), #12.9.8.
- C. K. Caldwell and Y. Xiong, What is the smallest prime?, arXiv preprint arXiv:1209.2007 [math.HO], 2012, and J. Int. Seq. 15 (2012) #12.9.6
- Leonhard Euler, Découverte d’une loi tout extraordinaire des nombres, par rapport à la somme de leurs diviseurs, in Bibliothèque impartiale, 3, 1751, pp. 10-31. Reprinted in Opera Postuma, 1, 1862, p.76-84. Number 175 in the Eneström index.
- G. P. Michon, Is 1 a prime number?
- Omar E. Pol, Illustration of initial terms
- Omar E. Pol, Illustration of initial terms of A008578, A161344, A161345, A161424
- PrimeFan, Arguments for and against the primality of 1
- A. Reddick and Y. Xiong, The search for one as a prime number: from ancient Greece to modern times, Electronic Journal of Undergraduate Mathematics, Volume 16, 1 - 13, 2012. - From _N. J. A. Sloane_, Feb 03 2013
- J. Todd, Review of Lehmer's tables, Mathematical Tables and Other Aids to Computation, Vol. 11, No. 60, (1957) (on JSTOR.org).
- Wikipedia, "Complete" sequence. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]
- Wikipedia, Dirichlet convolution
Crossrefs
Programs
-
GAP
A008578:=Concatenation([1],Filtered([1..10^5],IsPrime)); # Muniru A Asiru, Sep 07 2017
-
Haskell
a008578 n = a008578_list !! (n-1) a008578_list = 1 : a000040_list -- Reinhard Zumkeller, Nov 09 2011
-
Magma
[1] cat [n: n in PrimesUpTo(271)]; // Bruno Berselli, Mar 05 2011
-
Maple
A008578 := n->if n=1 then 1 else ithprime(n-1); fi :
-
Mathematica
Join[ {1}, Table[ Prime[n], {n, 1, 60} ] ] NestList[ NextPrime, 1, 57] (* Robert G. Wilson v, Jul 21 2015 *) oldPrimeQ[n_] := AllTrue[Range[n-1], CoprimeQ[#, n]&]; Select[Range[271], oldPrimeQ] (* Jean-François Alcover, Jun 07 2017, after Peter Luschny *)
-
PARI
is(n)=isprime(n)||n==1
-
Sage
isA008578 = lambda n: all(gcd(k, n) == 1 for k in (1..n-1)) print([n for n in (1..271) if isA008578(n)]) # Peter Luschny, Jun 07 2017
Formula
a(n) = A000040(n-1).
m is in the sequence iff sigma(m) + phi(m) = A065387(m) = 2m. - Farideh Firoozbakht, Jan 27 2005
a(n) = A158611(n+1) for n >= 1. - Jaroslav Krizek, Jun 19 2009
In the following formulas (based on emails from Jaroslav Krizek and R. J. Mathar), the star denotes a Dirichlet convolution between two sequences, and "This" is A008578.
A002033(a(n))=1. - Juri-Stepan Gerasimov, Sep 27 2009
a(n) = A181363((2*n-1)*2^k), k >= 0. - Reinhard Zumkeller, Oct 16 2010
a(n) = A001747(n)/2. - Omar E. Pol, Jan 30 2012
A060448(a(n)) = 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) = 0. - Reinhard Zumkeller, Dec 14 2012
Sum_{n>=1} x^a(n) = (Sum_{n>=1} (A002815(n)*x^n))*(1-x)^2. - L. Edson Jeffery, Nov 25 2013
Comments