cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008579 Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.

Original entry on oeis.org

1, 4, 8, 14, 18, 22, 28, 30, 38, 38, 48, 46, 58, 54, 68, 62, 78, 70, 88, 78, 98, 86, 108, 94, 118, 102, 128, 110, 138, 118, 148, 126, 158, 134, 168, 142, 178, 150, 188, 158, 198, 166, 208, 174, 218, 182, 228, 190, 238, 198, 248, 206, 258, 214, 268, 222, 278
Offset: 0

Views

Author

Keywords

Comments

Interesting because coefficients never become monotonic.
Also the coordination sequence for a planar net made of densely packed circles. - Yuriy Sibirmovsky, Sep 11 2016
Described by J.-G. Eon (2014) as the coordination sequence of the Kagome net. - N. J. A. Sloane, Jan 03 2018

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 161 (but beware errors).

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Programs

  • Haskell
    a008579 0 = 1
    a008579 1 = 4
    a008579 n = (10 - 2*m) * n' + 8*m - 2 where (n',m) = divMod n 2
    a008579_list = 1 : 4 : concatMap (\x -> map (* 2) [5*x-1,4*x+3]) [1..]
    -- Reinhard Zumkeller, Nov 12 2012
  • Maple
    f := n->if n mod 2 = 0 then 10*(n/2)-2 else 8*(n-1)/2+6 fi;
  • Mathematica
    a[n_?EvenQ] := 10*n/2-2; a[n_?OddQ] := 8*(n-1)/2+6; a[0] = 1; a[1] = 4; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 18 2011, after Maple *)
    CoefficientList[Series[(1+2x)(1+2x+2x^2+2x^3-x^4)/(1-x^2)^2,{x,0,50}],x] (* or *) LinearRecurrence[{0,2,0,-1},{1,4,8,14,18,22},50] (* Harvey P. Dale, Sep 05 2018 *)

Formula

G.f.: (1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4)/(1 - x^2)^2.
From R. J. Mathar, Nov 26 2014: (Start)
a(2n) = A017365(n), n > 0.
a(2n+1) = A017137(n), n > 0. (End)
From Stefano Spezia, Aug 07 2022: (Start)
a(n) = (9 + (-1)^n)*n/2 - 2*(-1)^n for n > 1.
E.g.f.: 3 - 2*x + (4*x - 2)*cosh(x) + (5*x + 2)*sinh(x). (End)