cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008610 Molien series of 4-dimensional representation of cyclic group of order 4 over GF(2) (not Cohen-Macaulay).

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 22, 30, 43, 55, 73, 91, 116, 140, 172, 204, 245, 285, 335, 385, 446, 506, 578, 650, 735, 819, 917, 1015, 1128, 1240, 1368, 1496, 1641, 1785, 1947, 2109, 2290, 2470, 2670, 2870, 3091, 3311, 3553, 3795, 4060, 4324, 4612, 4900, 5213, 5525, 5863
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of necklaces with 4 black beads and n white beads.
Also nonnegative integer 2 X 2 matrices with sum of elements equal to n, up to rotational symmetry.
The g.f. is Z(C_4,x), the 4-variate cycle index polynomial for the cyclic group C_4, with substitution x[i]->1/(1-x^i), i=1,...,4. Therefore by Polya enumeration a(n) is the number of cyclically inequivalent 4-necklaces whose 4 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_4,x). - Wolfdieter Lang, Feb 15 2005

Examples

			There are 10 inequivalent nonnegative integer 2 X 2 matrices with sum of elements equal to 4, up to rotational symmetry:
[0 0] [0 0] [0 0] [0 0] [0 1] [0 1] [0 1] [0 2] [0 2] [1 1]
[0 4] [1 3] [2 2] [3 1] [1 2] [2 1] [3 0] [1 1] [2 0] [1 1].
		

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 104.
  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, April 2004.

Crossrefs

Row n=2 of A343874.
Column k=4 of A037306 and A047996.

Programs

  • GAP
    a:=[1,1,3,5,10,14,22,30];; for n in [9..50] do a[n]:=2*a[n-1]-2*a[n-3] +2*a[n-4]-2*a[n-5]+2*a[n-7]-a[n-1]; od; a; # G. C. Greubel, Jan 31 2020
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    1/(1-x)/(1-x^2)^2/(1-x^4)*(1+2*x^3+x^4);
    seq(coeff(series(%, x, n+1), x, n), n=0..40);
  • Mathematica
    k = 4; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    LinearRecurrence[{2,0,-2,2,-2,0,2,-1}, {1,1,3,5,10,14,22,30}, 50] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    a(n)=if(n,([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; -1,2,0,-2,2,-2,0,2]^n*[1;1;3;5;10;14;22;30])[1,1],1) \\ Charles R Greathouse IV, Oct 22 2015
    
  • PARI
    my(x='x+O('x^50)); Vec((1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A008610_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) ).list()
    A008610_list(50) # G. C. Greubel, Jan 31 2020
    

Formula

G.f.: (1+2*x^3+x^4)/((1-x)*(1-x^2)^2*(1-x^4)) = (1-x+x^2+x^3)/((1-x)^2*(1-x^2)*(1-x^4)).
a(n) = (1/48)*(2*n^3 + 3*(-1)^n*(n + 4) + 12*n^2 + 25*n + 24 + 12*cos(n*Pi/2)). - Ralf Stephan, Apr 29 2014
G.f.: (1/4)*(1/(1-x)^4 + 1/(1-x^2)^2 + 2/(1-x^4)). - Herbert Kociemba, Oct 22 2016
a(n) = -A032801(-n), per formulae of Colin Barker (A032801) and R. Stephan (above). Also, a(n) - A032801(n+4) = (1+(-1)^signum(n mod 4))/2, i.e., (1,0,0,0,1,0,0,0,...) repeating, (offset 0). - Gregory Gerard Wojnar, Jul 09 2022

Extensions

Comment and example from Vladeta Jovovic, May 18 2000