cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008624 Expansion of g.f. (1 + x^3)/((1 - x^2)*(1 - x^4)) = (1 - x + x^2)/((1 + x)*(1 - x)^2*(1 + x^2)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17
Offset: 0

Views

Author

Keywords

Comments

Molien series of 2-dimensional representation of group of order 16 over GF(3).

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 107.

Crossrefs

Essentially the same as A059169.

Programs

  • Maple
    f := x -> (1+x^3)/((1-x^2)*(1-x^4)): seq(coeff(series(f(x), x, n+1), x, n), n=0..64);
    a := n -> floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2): seq(a(n), n=0..64); # Johannes W. Meijer, Oct 08 2013
  • Mathematica
    CoefficientList[Series[(1 + x^3) / (1 - x^2) / (1 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 15 2013 *)
    LinearRecurrence[{1,0,0,1,-1},{1,0,1,1,2},70] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    a(n) = (3 + 3*(-1)^n + (1-I)*(-I)^n + (1+I)*I^n + 2*n) / 8 \\ Colin Barker, Oct 15 2015
    
  • PARI
    my(x='x+O('x^100)); Vec((1+x^3)/((1-x^2)*(1-x^4))) \\ Altug Alkan, Dec 24 2015

Formula

From Reinhard Zumkeller, Aug 05 2005: (Start)
a(n) = floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2).
a(n) = A110654(A028242(n)). (End)
a(n) = (3 + 3*(-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n) / 8 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = (2*n+3+2*cos(n*Pi/2)+3*cos(n*Pi)-2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
E.g.f.: (cos(x) + (3 + x)*cosh(x) - sin(x) + x*sinh(x))/4. - Stefano Spezia, Jan 03 2023

Extensions

Replaced x^2 three times with x in the generating function (un-aerated). - R. J. Mathar, Oct 23 2008